
JavaScript Design

William B. Sanders
Publisher: New Riders Publishing
First Edition December 20, 2001
ISBN: 0-7357-1167-4, 600 pages

JavaScript Design

About the Author

About the Technical Reviewers

Acknowledgments
 Tell Us What You Think

I: Basic JavaScript

1. Jump-Starting JavaScript
 JavaScript Lives in a Web Page
 Putting JavaScript into Your HTML Pages
 What You Can Do with JavaScript That You Can’t Do with HTML
 An Interpreted Language
 A Tale of Two Interpreters
 Generated JavaScript
 Summary

2. An Orientation to JavaScript
 Writing JavaScript
 Naming Rules and Conventions
 A Weakly Typed Language Means That JavaScript Is Smart
 Summary

3. Dealing with Data and Variables
 Literals
 Variables
 Primitive and Compound Data
 Arrays
 Summary

4. Using Operators and Expressions
 General and Bitwise Operators

 General Operators in JavaScript
 Operators
 Precedence
 Summary

5. JavaScript Structures
 Statements in Sequential Structures
 Conditional Structures
 Loops
 The with Statement
 The label and continue Statements and Nested Loops
 Summary

6. Building and Calling Functions
 Methods and Functions
 Creating Functions
 Firing Functions with Event Handlers
 The return Statement
 Using Functions as Data
 Properties in Functions
 Methods in Functions
 Summary

7. Objects and Object Hierarchies
 Hierarchy of Objects in JavaScript
 User-Defined Objects
 Built-in Objects and Their Properties
 Key Built-in Object Methods
 Summary

II: Using JavaScript with Web Pages

8. JavaScript Object-Oriented Programming and the Document Object Model
 Object-Oriented Programming in JavaScript
 The Prototype Concept
 The Document Object Model
 Summary

9. Frames and Addressing Frames in Windows
 The Window as a Complex Object
 Scripts That Write Scripts
 Summary

10. Event Handlers
 The location, anchor, and history Objects
 Events and Event Handlers in HTML and JavaScript
 Summary

11. Making Forms Perform
 The Many Types of Forms Elements in HTML
 All Text Entries Are Strings
 Passing Data Between Forms and Variables
 Forms as Arrays
 Types of Forms
 Buttons and Their Events
 Summary

12. Dynamic HTML
 What Is Dynamic HTML?
 Cascading Style Sheets
 Borders
 External CSS Style Sheets
 The Role of JavaScript in Dynamic HTML
 Summary

13. Remember with Cookies
 What Are Cookies and How Are They Used?
 Adding More Attributes
 Getting Information and Giving It Back
 Summary

III: JavaScript and Other Applications and Languages

14. Using PHP with JavaScript
 The PHP4 Scripting Language
 Passing Data from JavaScript to PHP
 Controlling Multiple PHP Pages with JavaScript
 JavaScript Form Preprocessing for PHP
 JavaScript, PHP, and MySQL
 Summary

15. Using ASP with JavaScript
 Creating ASP Pages
 Variables in VBScript
 Operators and Conditional Statements
 Loop Structures
 Arrays
 Passing Data from JavaScript to ASP
 Controlling Multiple ASP Pages with JavaScript
 Microsoft Access, ASP, and JavaScript
 Setting Up the Access 2000 File
 Placing the Access 2000 File on the Server and Preparing the DSN
 Making the Connection Between Your ASP Page and Database File
 Reading an Access 2000 Database with ASP
 Reading and Displaying Multiple Fields
 Inserting Records into Access from HTML
 Summary

16. CGI and Perl
 Scripting with Perl
 A Brief Perl Tutorial
 Perl Operators
 Perl Statements
 File Handling in Perl
 Passing Data to CGI from HTML
 Summary

17. Working with XML and JavaScript
 The XML Mystique
 What Is XML?
 Reading and Showing XML Data with JavaScript
 Summary

18. Flash ActionScript and JavaScript

 ActionScript and JavaScript
 Firing a JavaScript Function from Flash
 Passing Variables from Flash 5 to JavaScript
 Summary

19. JavaScript and Other Languages
 JavaScript and Java Applets
 A Little Java
 JavaScript and ColdFusion
 JavaScript and ASP.NET
 Summary

Example Glossary

About the Author

Dr. William B. Sanders is a professor in the Interactive Information Technology
program at the University of Hartford. The program is designed to develop
students who will work in collaborative environments using the Internet and the
World Wide Web and develop digital communicative technologies. Bill has written
more than 35 computer-related books, with the goal of translating technology to
a wide interest base. To mangle a phrase from Will Rogers, he never met a
computer or computer language that he didn’t like.

Like the revolution spawned by personal computers, the Internet and the World
Wide Web have spawned another. The new languages and applications required
to master and effectively use Internet technologies have been a focal interest of
Bill’s since the web’s inception. He has been focused on languages such as
JavaScript, PHP, ASP, XML, ActionScript, MySQL, and a host of other web-based
programs and applications. However, instead of looking at the new technologies
solely as a cool way to make things happen on the web, Bill has been involved
with different aspects of e-business and e-commerce, bridging the digital divide in
communities and generally looking at ways in which the Internet and the web
serve as a lively linkage between people and their aspirations.

As a source of information and understanding, the web is unparalleled, but it is
also an arena to explore new art forms and ways of human expression. Bill has
sought out design concepts from Edward Tufte’s work on information, Hillman
Curtis’s work on motion design, and David Siegel’s work on third-generation web
sites. For Bill, each new development in creativity, technology, and
communication is an opportunity to see the world in a new light and expand
horizons.

His hobbies include travel, Greater Swiss Mountain Dogs, and life with his wife,
Delia.

About the Technical Reviewers

These reviewers contributed their considerable hands-on expertise to the entire
development process for JavaScript Design. As the book was being written, these
dedicated professionals reviewed all the material for technical content,
organization, and flow. Their feedback was critical to ensuring that JavaScript
Design fits our readers’ need for the highest-quality technical information.

Josh Kneedler resides in Portland, Oregon. He is a founding partner of the visual
media studio Dreaming America (http://dreamingamerica.com). With the support
of Dreaming America, Josh has also started an online magazine called Rangermag
(http://rangermag.com). Over the years since 1997, Josh has acquired a strong
sense of both functionality and design. He can be reached at
josh@dreamingamerica.com.

Joel Lee and Bryan Ginz are technical editors for JTL Networks, Inc. (JTLNET).
Based in Columbus, Ohio, JTLNET provides a variety of information technology
and consulting services for businesses, including managed web hosting, custom
programming and design, remote administration, remote data storage, and
network design. For more information on JTLNET, visit www.jtlnet.com.

Acknowledgments

This book began back in 1996 using JavaScript 1.1 and later JavaScript 1.2, when
it became available. A group of us at the University of Hartford got together once
a week to create problems to be solved with JavaScript and, much to my surprise
and delight, many of the tools, applications, and utilities that we developed then,
we still use today. Of those involved, the brightest of this group was and remains
to be David Kelly. Dave developed a Quiz-Maker in JavaScript that still makes
great online quizzes. He also seemed to be about five jumps ahead of the rest of
us and was a great help to us all. Laura Spitz, a designer extraordinaire, still does
extraordinary designs and uses JavaScript regularly in her work. She introduced
me to BBEdit and HomeSite, which have yet to replace NotePad and SimpleText
on my PC and Mac, respectively. Finally, Morris Hicks, who recently took over the
Assistant Director of the Office of Information Technology position at Boise State
University, was a regular with our group and provided a knowledgeable presence
at our meetings.

Also at the University of Hartford, I’d like to thank the faculty and students in the
Interactive Information Technology program. The students are an always creative
lot who challenge the faculty to come up with better courses, answers, and
scripts. Likewise, the IIT faculty, including John Gray, Jerry Katrichis, and David
Demers, are a good group to kick ideas around with. Also, Steve Misovich and
Lou Boudreau of the University of Hartford Hillyer College psychology faculty were
a true inspiration as we developed a virtual psychology lab for the web.
Everything from a rat maze to a timed reaction experiment were accomplished
using JavaScript as part of a grant application to the National Science Foundation.
During this project, I learned that there is very little that cannot be accomplished
with JavaScript once a project goal has been set.

Next, I’d like to thank the people at New Riders. Thanks to Stephanie Wall, who
worked with me to develop an outline for the book that would focus on designers’
needs in working with and understanding JavaScript. Also, I would like to thank
John Rahm for helping to develop everything just right and Jake McFarland for

coordinating the details of the finishing touches. Thanks also to the copy and
technical editors—Krista Hansing, Josh Kneedler, Joel Lee, and Bryan Ginz— for
locating the glitches and setting them straight.

Finally, I’d like to thank my wife, Delia. As I was starting this book, she was
beginning her doctoral work at Smith College, and so both of us were in our
studies, thinking and writing together. Like everything else we do together, it
brought us closer.

Tell Us What You Think

As the reader of this book, you are the most important critic and commentator.
We value your opinion and want to know what we’re doing right, what we could
do better, what areas you’d like to see us publish in, and any other words of
wisdom you’re willing to pass our way.

As the Associate Publisher for New Riders Publishing, I welcome your comments.
You can fax, email, or write me directly to let me know what you did or didn’t like
about this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of
this book, and that due to the high volume of mail I receive, I might not be able
to reply to every message.

When you write, please be sure to include this book’s title and author as well as
your name and phone or fax number. I will carefully review your comments and
share them with the author and editors who worked on the book.

Fax: 317-581-4663
Email: stephanie.wall@newriders.com

Mail: Stephanie Wall
Associate Publisher
New Riders Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Part I: Basic JavaScript

Part I Basic JavaScript

1 Jump-Starting JavaScript

2 An Orientation to JavaScript

3 Dealing with Data and Variables

4 Using Operators and Expressions

5 JavaScript Structures

6 Building and Calling Functions

7 Objects and Object Hierarchies

Chapter 1. Jump-Starting JavaScript

CONTENTS>>

• JavaScript Lives in a Web Page
• Putting JavaScript into Your HTML Pages
• What You Can Do with JavaScript That You Can't Do with HTML
• An Interpreted Language
• A Tale of Two Interpreters
• Generated JavaScript

Getting Started With JavaScript is like beginning any other scripting, or
programming, language. To learn it, you have to use it. JavaScript is the “engine”
that makes things move on a page; by working with dynamic design elements,
the more you see what can be done with JavaScript and the more incentive there
is to learn to use it. JavaScript allows designers to release those aspects of design
creativity that cannot be expressed in static HTML.

You need not look very far to find a use for JavaScript, and so opportunities
abound for learning the language—rollovers, moving text, prompt windows, and
alert boxes are just a few of the actions powered by JavaScript. JavaScript is a
ranged language. It ranges from extremely simple built-in functions and
statements that can make your page jump to fairly sophisticated coding
structures. By beginning with the simple, you can ease your way to its more
complex and powerful structures as dictated by design needs. It doesn’t require a
compiler or a degree in computer science to learn. It lives right among the HTML
tags, and most JavaScript programs are relatively small, so you’re not spending
all your life writing hundreds of lines of code.

Throughout this book, you will see explanations accompanied by examples and
applications. However, the applications are really only extensions of some feature
or concept in JavaScript. My goal with this book is not merely to enable you to cut
and paste snippets of code, but rather to understand JavaScript in a way that you
can apply to your own projects. When you master JavaScript, you will be able to
imagine a project or design in your mind’s eye and then create the JavaScript
necessary to make your imagined scene a reality on a web page.

JavaScript captures user events that cause actions to happen on a web page. As
a designer who has mastered JavaScript, you will be able to invent new ways that
the user interacts with an interactive project.

JavaScript Lives in a Web Page

All the code that you write for JavaScript goes into an HTML page. If you don’t
know HTML yet, you should run out and get a good book on HTML. Lynda and
William Weinman’s Creative HTML Design.2 (New Riders, 2001) is a good choice
for designers and developers. However, assuming that you are familiar with HTML,
you should be familiar with the whole concept of a tag language. HTML stands for
Hypertext Markup Language. As a markup language, HTML essentially describes a
web page as a static entity. A far more challenging endeavor is to program a web
page that is dynamic, engaging, and intriguing. That’s where JavaScript comes
into play.

The most dynamic elements in HTML, beside the link, are event-related attributes.
For example, onClick is one of the event-related attributes of HTML. The HTML
attribute launches a script when the user clicks on a portion of the page sensitive
to a mouse-click action set up by the HTML. However, because HTML itself has no
dynamic components, it relies on scripts written in JavaScript. An event-related
attribute in HTML is like having a starter on a car with no engine—JavaScript is
the engine.

When you have finished an HTML page using solely HTML, the page sits on the
screen until you click a link that connects to a separate HTML page, which makes
the current page go away.

With JavaScript, you can create pages that make something happen on the page
when the person viewing the page takes an action that fires a JavaScript. For
example, you might have seen pages that have buttons that change shape or
color when the mouse passes over them. That change can be made with a script
written in JavaScript and fired by an event-related attribute in HTML:
onMouseOver. You are also working on a page that doesn’t necessarily have to
make server requests. All the interaction is taking place without having to
download anything. Depending on the application, this can set the groundwork for
instantaneous responsive experiences.

Putting JavaScript into Your HTML Pages

This section contains several scripts written in JavaScript that illustrate some of
the things that you can do using JavaScript that cannot be done with HTML alone.
All these scripts are simple, but at this point in the book, they are not explained
beyond the most general terms. They serve to illustrate where to place JavaScript
code and the difference between immediate and deferred working of the script.
An immediate script executes as soon as it loads, and a deferred script waits until
the user does something to make the script launch.

Most JavaScript is written in a tag container named script. The generic format
looks like the following:

<script language="JavaScript">
script goes here
</script>

As you will see in the examples throughout this book, the script container is
required for most JavaScript, even though a few cases exist in which JavaScript
can be applied on the fly. However, you should expect to see the opening and
closing <script> tags where you see JavaScript.

CAUTION

Unlike some tags that do not require an ending or closing tag, the <script>
absolutely requires a </script> tag. In debugging your script, the first thing to
check is to make sure that you put in both tags.

For example, the following is a simple, minimal script of what an HTML page
needs for JavaScript to work:

<html>
<body>
<script language="JavaScript">
document.write("Hello designers and developers.");
</script>
</body>
</html>

The JavaScript container has a single line of JavaScript to be executed as soon as
the parser passes over it. The parser is the interpreter that reads the code one
line at a time, beginning with the top line. Usually, you will find JavaScript code in
the head section of an HTML page. (The area in the <head>…</head> container is
the head.) All the code in the head section of an HTML page is loaded first; if code
is placed in the head, you do not have to worry about the code being only
partially loaded when the viewer is ready to fire the JavaScript functions.

What You Can Do with JavaScript That You Can’t Do
with HTML

The most important feature that JavaScript can add to a web site design is the
capability to introduce dynamic interactivity into pages. The concept of dynamic
interactivity implies change in response to an action. For example, a design might
be one that seeks to engage the viewer in the page. By having page elements
that respond to the viewer’s action, the designer can have a page that interacts
with the viewer rather than just sitting there for the viewer to look at. In one
respect, HTML sites are interactively dynamic because the viewer navigates to
different places in the site depending on where she clicks on the page. However,
the pages themselves are fairly static. With dynamic interactivity on a page,
features of the page change as the user moves, clicks, or drags the mouse over
the page.

Alerting the Viewer

A useful built-in function in JavaScript is the alert() function. This function
sends a message to the page. The contents of the message can vary depending
on what the user does, or the messages can be static. When the alert box
appears with the message, the user clicks to close it. The following example is a
very simple one that illustrates how to use a function in a script. Throughout the
book, examples using the alert() function will help you understand JavaScript,
and I think you will find it a good learning tool. Of course, you can use it in more
sophisticated ways than what is presented here. When you start writing more
complex functions, you will find the alert() function valuable in terms of
pinpointing problem areas in the function.

Later in the book, you will learn a lot more about functions. However, for now, it
is enough to know that JavaScript contains built-in functions that execute a set of
instructions to do things like put messages on the screen, prompt users to enter
information, and write text to the screen. You may also write your own functions
consisting of a set of statements and other functions. Typically, a function’s
actions are deferred until the user does something, such as click a button, to
launch them. However, as you will see in the following script, a function can be
fired in the immediate mode.

<html>
<head>
<title>Simple Alert </title>
</head>
<body>
<script language="JavaScript">
alert("I told you it was simple!");
</script>
</body>
</html>

The only dynamic interactivity that the user engages is clicking the OK button to
remove the message from the screen. However, later in the book, you will see
some far more dynamic uses of this handy little function. Figure 1.1 shows what
you should see when your page comes up.

Figure 1.1. JavaScript adds interactivity to web pages.

Prompting a Reaction

The second example of dynamic interactivity on a page using JavaScript can be
seen using the prompt() function. This built-in function can take two arguments.
An argument is some value in the function that you can change to different
values, whether it is entered in the code itself or whether the user puts it in
himself. Thus, a single function can have several different values throughout a
single script, and you can use it with several different designs. All you need to
change are the arguments in the function; you don’t have to rewrite the function
even though the design is different. A Cascading Style Sheet (CSS) is added to
provide an integrated color system to the page. Chapter 12, “Dynamic HTML,”
goes into detail about using CSS, but I believe that you should start using CSS in
all HTML designs. CSS soon will be replacing tags such as for specifying
colors in text, and CSS helps designers better set up color schemes, font sizes
and weights, and overall design of a page. Also, you can see how CSS can be
integrated into a JavaScript program.

prompt.html
<html>

<head>
<title>Prompt</title>
<style type="text/css" >
.prompt {
font-family: verdana;
font-weight:bold;
color: #8b6952;
background-color:#d3c75e;
font-size:18pt
}
body {
background-color: #db4347
}
</style>
</title>
<body>
<center><p><p>
<div class=prompt>
<script language="JavaScript">
var yourname
yourname=prompt("Enter your name:","Name");
document.write("Welcome, " + yourname);
</script>
</div>
</body>
</html>

CAUTION

If you use a version other than Version 6 of Netscape Navigator, you will see a
different background when using Netscape Navigator and Internet Explorer. Prior
to Version 6, the browsers interpreted CSS differently, but current browsers
adhere to the standards set by the World Wide Web Consortium (W3C).

The two arguments used in the prompt() function are the prompt message that
you select (Enter Your Name) and the optional placeholder that appears in the
prompt window (Name). When the user opens the page, the script automatically
runs. The script is right in the middle of the HTML and is executed as soon as the
parser reads and interprets the code. Figure 1.2 shows what the viewer sees
when the page opens.

Figure 1.2. The viewer is prompted to enter a name.

After the viewer has entered information, he sees his name on the web page, as
shown in Figure 1.3.

Figure 1.3. The information entered by the user now
appears on the web page.

Changing Background Colors

The capability to change background colors on the fly allows the designer to get
the viewer’s attention. First, whenever a background color changes, the viewer is
alerted to something different going on, and this change can be used to produce
a mood or context that the designer wants to impart. Second, creative designers
have used changes in background color to reveal hidden text. White text on a
white background is invisible, but as soon as the background turns to black, the
white text is revealed and black text is hidden.

This next example shows one of the few places where JavaScript is not required
to have a container to first define JavaScript and an example of JavaScript
running in the deferred mode. The buttons in the form serve as firing
mechanisms for the JavaScript code. No JavaScript is executed until a button is
pressed. Unlike the previous two examples, the JavaScript in this script is
deferred.

This line:

<input type="button" value="#d0d0a9"
onClick="document.bgColor='d0d0a9'">

contains the firing button ("button"), the event handler attribute (onClick), and
the built-in JavaScript (document.bgColor=). The CSS code takes up all the room
in the head of the page; however, it is important because it not only defines the
body text, but also the masked message that appears when the background color
changes to reveal text on the page.

colorChange.html
<html>
<head>
<style type="text/css">
.bText {
font-family: verdana;
font-weight:bold;
font-size:10pt
}
.surprise {
font-weight:bold;
color: #cc2801;
font-size:24pt
}
</style>
</head>
<body bgcolor="#cc2801">
<center>
<table border=0 cellpadding=5 cols=1 width="40%" height="40%" >
 <tr>
 <td align=center valign=center bgcolor="#3c6816">
 <p class=bText>Click a button below to change the
background color.</p>
 <form>
<input type="button" value="#d0d0a9"
onClick="document.bgColor='d0d0a9'">

<input type="button" value="#794e23"
onClick="document.bgColor='#794e23'">

<input type="button" value="#cc2801"
onClick="document.bgColor='#cc2801'">
 </td>
 </tr>
</table>
<div class=surprise>Surprise!</div>
</center>
</body>
</html>

The preceding listing might seem to be a lot of code for changing background
colors, but most of the code relates to the CSS—only three lines use the
JavaScript. With all the changes that take place on the page, it appears as though
several different pages are rapidly sequencing through the browser. However, it’s
just a single page with a little JavaScript. Figure 1.4 shows what the viewer will
see when she changes background colors from the original.

Figure 1.4. By changing background colors, masked
messages appear.

A Function to Convert Decimal to Hexadecimal

The heart and soul of JavaScript belongs in functions. In Chapter 6, “Building and
Calling Functions,” functions are discussed in detail. As noted previously,
functions are self-contained clusters of JavaScript. The functions can then be used
throughout the page in which they are defined and can be launched using event-
related attributes. Furthermore, keep in mind that functions are either built-in,
like the alert() and prompt() functions, or user-defined. A user-defined
function is one that the programmer writes and uses in her page. However, the
built-in and userdefined functions work and are launched in the same way.

This next script uses a function that converts three sets of decimal numbers into
a hexadecimal number. While relatively complex for the first chapter, the purpose
of the script is to show you something very practical that you can do with
JavaScript. To get an exact match between colors that you develop in graphic
programs such as Adobe Photoshop and your web page, you need to change the
decimal RGB (red, green, blue) colors into a hexadecimal value. For example, a
rich red has the following values:

R=169 G=23 B=35

To use those numbers, they have to be translated into a six-character
hexadecimal value that you can see in the following CSS definition:

Body { background-color: a91723;}

You can find lots of decimal-to-hexadecimal converters on the web, but because
you want to convert colors, you need the conversion in groups of three for the
red, green, and blue values. Taking the three decimal values, your converter
should convert the colors into a single six-character hexadecimal value. The
following program does just that.

NOTE

If you’re new to programming, do not be intimidated by the code in this next
script. In the following several chapters, you will be introduced gradually to the
kind of code and structures that allow you to build more sophisticated JavaScript
programs. This one is simply an example of what you can do with JavaScript and
one that you can use to convert decimal values into hexadecimal ones for use in
your pages.

decimal2hex.html
<html>
<head>
<style>
body {
font-family: verdana;
background-color: a91723;
color: fcc0b9;
font-weight:bold;
font-size:10pt
}
</style>
<title>Decimal To Hex Conversion</title>
<script language="JavaScript">
function dec2hex() {
var accum=" ";
for (var i=0;i<3;i++) {
 var dec=document.convert.elements[i].value;
 var toNum=Math.floor(dec);
 var toHex=toNum.toString(16);
 if (toHex.length==1) {
 toHex= "0"+toHex;
 }
 accum += toHex;
 }
document.convert.hex.value=accum;
}
</script>
</head>
<body >
<center>

Decimal to Hexadecimal Converter
</center>

<form name="convert">
<input type="text" name="dec1" size=3>
<input type="text" name="dec2" size=3>
<input type="text" name="dec3" size=3>
<-Enter decimal numbers here:

<input type="text" name="hex" size=6>

<-View hexadecimal number here:<p>

<input type="button" value="Convert to hexadecimal"
onClick="dec2hex()">
</p>
</body>
</html>

The big line of (nonbreaking spaces) is simply for adding spaces—a
formatting chore. The script uses data entered by the web page viewer in the
form windows. The function converts each decimal number using a loop, checking
for single-digit results that require a leading zero (0), and then builds a string
containing six characters that make up the hexadecimal values. Finally, the
function sends the results to the viewer. Figure 1.5 shows you what the viewer
sees when she enters values to be converted into a six-digit hexadecimal value.

Figure 1.5. JavaScript can create very practical and
useful applications.

Now that you have seen some examples of what JavaScript can do in
collaboration with HTML, the next sections provide some more information about
how JavaScript works in your browser.

An Interpreted Language

Some languages are interpreted, and some are compiled. JavaScript is an
interpreted language. Your browser, most likely Netscape Navigator or Internet
Explorer, acts as a translator between JavaScript and the native language that
your computer uses. The process involves your browser parsing (interpreting) the
JavaScript code and then creating an equivalent machine language and having
your computer execute the interpreted code. Compiled languages such as Java
and C++ are already interpreted (compiled), so they go right into the computer,
ready to talk with your computer.

The process is something like visiting France and communicating in French. If you
don’t know French, the easiest way to communicate is with an interpreter who
speaks both French and English. It takes a little longer because everything that
you say has to be translated into French. Alternatively, you could go to classes to

learn to speak French before your visit to France. Learning French will take more
time and effort, but when you go to France, you will be understood without an
interpreter and communication will go much more quickly.

Interpreted and compiled languages in computers work somewhat along the
same lines. Generally, interpreted languages are easier to learn and use, but they
take more time to run in your computer. Compiled languages take more time to
master, debug, and write, but they execute far more quickly. However, most
JavaScript applications are fairly short. The interpreter doesn’t have much to
interpret—good day (bonjour)—and so the difference between a complied and
interpreted language is often negligible. This is especially true today with the high
speeds of modern computers.

A Tale of Two Interpreters

A bit more serious problem exists between the two main interpreters, Netscape
Navigator and Internet Explorer. Each has a slightly different way of translating
JavaScript. Fortunately, only a few elements are translated differently, but,
unfortunately, the differences can create major problems. The European
Computer Manufacturer’s Association (ECMA) sets standards for JavaScript, and
both Netscape and Microsoft generally adhere to these standards. However, for
some reason, each has decided to have a slightly different way of interpreting
JavaScript; when those differences are encountered, you need to know how to
deal with them. In the meantime, be aware that JavaScript’s interpretation of a
few commands and statements has slightly different structures for the two
competing interpreters.

NOTE

To make matters more interesting, both of the major browsers keep improving on
their products. At this writing, Netscape Navigator (NN) is part of Version 6 of
Netscape Communicator, and Internet Explorer (IE) is in Version 5.5. However,
the numbers don’t tell us much because NN skipped Version 5 altogether and
went from Version 4.7 to Version 6. What is important is that the browsers are
interpreters and that the interpreters determine what version of JavaScript each
can read. Even though JavaScript 1.3 and 1.5 language elements are available,
they’re still in testing. Realistically, JavaScript’s big developmental change came
with JavaScript 1.2. While this book covers the new features added with
JavaScript 1.3 and 1.5, most JavaScript in its newest configuration was present
when JavaScript 1.2 appeared. The official revision version of JavaScript is ECMA-
262, and JavaScript 1.2, 1.3, and 1.5 adhere to ECMA-262—with the exceptions
that the browser manufacturers add. When JavaScript 2.0 is complete, you won’t
have to learn JavaScript all over again. The goal is to have backward
compatibility with earlier versions of JavaScript. So, learning JavaScript, where
most of the revisions were put into JavaScript 1.2 , is a safe starting place for
now and for later revisions.

In the meantime, don’t be overly concerned about all these different versions of
JavaScript. Just be aware of them. If you use Version 4 and above on either of
the major browsers, your JavaScript can be read just fine except where little
differences of interpretation exist. You will be alerted to those places where the
two major browsers part company and how to deal with the differences.

Generated JavaScript

Many designers have their first developmental encounter with JavaScript when
they create web pages with tools such as Macromedia Dreamweaver, Adobe
GoLive, or Microsoft FrontPage. Not only will these tools generate JavaScript for
you, but they will do it for either or both of the major browsers.

In looking at the code, however, you have no idea of what’s going on in the code
unless you understand JavaScript. Sometimes the generated code will tap into
code in one of its libraries that you cannot see. It will connect to an external .js
file containing a good deal of code that you won’t see, but can be fairly complex.
If you want to change it or even tweak it a little with added or altered code,
you’re lost. So, the first goal in learning JavaScript is to be able to fine-tune
JavaScript generated in your web site development tools.

Second, you might want to learn JavaScript to lighten the amount of code that
some site development tools generate. Jakob Nielsen, author of Designing Web
Usability (New Riders, 1999), points out that site-development tools sometimes
cause “code bloat.” That is, the generic code developed in the site tools
sometimes generates more code than is absolutely necessary, and you can cut it
down. The reason you want to avoid code bloat is that it creates a larger file than
you need, so it loads slower. For example, take a look at the following script:

<html>
<head>
<title>Swap Simple</title>
<script language="JavaScript">
var sample2= new Image()
sample2.src="sample2.gif"
var sample1=new Image()
sample1.src="sample1.gif"
function switch2() {
 document.sample.src=sample2.src
}
function switch1() {
 document.sample.src=sample1.src
}
</script></head>
<body>
 <img
name="sample"
src="sample1.gif" border=0>
</body>
</html>

This code is quite simple (if you know JavaScript) and accomplishes the same
rollover effect as code generated in one of the web site development tools.
However, it is a good deal clearer to understand because all of the elements are
laid out and available, whereas code generated by site development tools can
often mask many of the key elements that make your code do what you want.

Summary

This chapter’s goal has been to provide a glimpse of JavaScript and a little
understanding of what it can do. JavaScript ranges from very simple but useful
applications to very complex scripts that handle complex tasks. Don’t expect to

learn the language all at once, but do begin to think about designs that can be
aided by the inclusion of JavaScript in your web pages. Include interactive
elements in your pages using JavaScript so that the viewer is engaged in the
page rather than a passive audience. Like all languages, the more you use it, the
easier it becomes to apply in your web pages. So, start using the language right
away.

JavaScript is interpreted by your browser, and while different browsers can
require different scripting strategies, most JavaScript follows the ECMA-262
standard. However, be aware that some nagging differences exist. In later
chapters, you will be prepared with strategies for dealing with these differences.

Chapter 2. An Orientation to JavaScript

CONTENTS>>

• Writing JavaScript
• Naming Rules and Conventions
• A Weakly Typed Language Means That JavaScript is Smart

Writing JavaScript

AS YOU SAW IN Chapter 1, “Jump-Starting JavaScript,” JavaScript goes into an
HTML page. However, you do not write JavaScript with the same abandon as you
do HTML. Very specific and apparently minor differences exist between how HTML
can be written and how JavaScript can be written. While the differences might
appear to be minor or even trivial, if the rules for writing JavaScript are not
followed, you can run into glitches. This chapter examines the nuances of
JavaScript so that when you start writing your own scripts, you’ll have all of the
basics clear in your mind.

HTML is a markup language, and JavaScript is a programming or scripting
language. HTML describes what is to be presented on a page, and JavaScript
dynamically changes what is on an HTML page (among other tasks.) Both use
code. HTML’s code is in a series of angle brackets that describe how to treat the
material between the opening and closing brackets. JavaScript is a set of
statements and functions that does something in an HTML page. JavaScript can
refer to and alter objects described by HTML.

Case Sensitivity

You can write HTML tags in just about any way you want, as long as you spell the
tags correctly and remember to include the arrow bracket around the tags. For
example, the following little page will work just fine in HTML:

<hTmL>
<heaD>
<Title>Do it your way</tITLE>
</HEAD>
<BoDY Bgcolor="HotPink">
<ceNTer>
<h1>
HTML is CaSe InSeNsItIvE!
</H1>

</bODY>
</HTML>

Just about every non–case-sensitive combination of characters that you can
imagine has been put into that page. The opening tags of a container are in one
case combination, and the closing tags are in another. Tags in one case are
duplicated with tags in another case. For HTML, that’s no problem. You don’t have
to pay attention to case at all.

JavaScript is the opposite. You have to pay attention to the cases of everything
that you type in JavaScript because it is case-sensitive. The HTML around the
script need not be case-sensitive, but the JavaScript itself must be. Consider the
following examples. The first follows the rules of case sensitivity, and the second
one does not.

<html>
<head>
<title>Case Sensitive</title>
<script language="JavaScript">
alert("Pay attention to your cases!");
</script>
</head>
<body bgcolor="moccasin">
<p>
<h1>Just in case!</h1>
</p>
</body>
</html>

When you load the page, you will see an alert message telling you to pay
attention to your cases. As soon as you click the OK button on the alert box, the
rest of the page appears with the message “Just in case.” Now, look at this next
script to see if you can tell where the error lies. It is slightly different from the
first—only the a in “alert” has been changed so that it is “Alert.” Just that little
change will invalidate the JavaScript code. Launch the page with the capital A,
and see what happens.

<html>
<head>
<title>Case Sensitive</title>
<script language="JavaScript">
Alert("Pay attention to your cases!");
</script>
</head>
<body bgcolor="moccasin">
<p>
<h1>Just in case!</h1>
</p>
</body>
</html>

As you saw, the page didn’t crash and burn. It just ignored the JavaScript and
went on and put up the page on the screen. I would rather see an error message
issued so that I could see any problems that arise, but neither of the newest
versions of the browsers indicated any trouble at all. (In Netscape Navigator 4.7 ,
a little error message blinks in the lower-left corner, but it happens so fast that

you cannot tell that your script has an error.) Debugging JavaScript is often a
matter of not seeing what you expect on the screen rather than seeing any clue
that you’ve coded your script incorrectly. However, ignoring case sensitivity is
likely to be one bug in the code that you should suspect immediately.

For the most part, JavaScript is typed in lowercase fonts, but you will find many
exceptions to that rule. In Chapter 1, you might have noticed the use of
Math.floor along with toString in one of the scripts. Both of those words use a
combination of upper- and lowercase fonts: intercase. Object, Math, Date,
Number, and RegExp are among the objects that use case combinations as well.
Properties such as innerHeight, outerWidth, and isFinite, likewise, are among
the many other JavaScript terms using case combinations.

You also might run into cases differences in HTML and JavaScript. Event-related
attributes in HTML such as onMouseOver, onMouseOut, and onClick are spelled
with a combination of upper- and lowercase characters by convention, but, in
JavaScript, you must use all lowercase on those same terms. Hence, you will
see .onmouseover, .onmouseout, and .onclick.

Another area of case sensitivity in JavaScript can be found in naming variables
and functions. You can use any combination of upper- and lowercase characters
that you want in a function or variable name, as long as it begins with an ASCII
letter, dollar sign, or underscore. Functions are names that you give to a set of
other statements or commands. (See an introduction to functions in Chapter 1.)
Variables are names that you give to containers that hold different values. For
example, the variable customers might contain the words “John Davis” or “Sally
Smith.” Variables can contain words or numbers. (See the next chapter for a
more detailed discussion of variables.) When the function or variable is given a
name, you must use the same set of upper- and lowercase characters that you
did when you declared the variable or functions. For example, the following script
uses a combination of characters in both variables and function. When the
function is fired, the name must be spelled as it is in the definition.

VarFuncCase.html
<html>
<head>
<title>Cases in Variables and Functions</title>
<script language="JavaScript">
var Tax=.05
function addTax(item) {
var Total=item + (item * Tax);
var NewTotal=Math.floor(Total);
var Fraction=Math.round(Total *100)%100;
if (Fraction<10) {
Fraction = "0" + Fraction;
}
Total=NewTotal +"." + Fraction;
alert("Your total is $" + Total);
}
</script>
</head>
<body bgcolor="palegreen">
<center><h2>
 Click for total
</body>
</html>

Several variables and two functions (the alert function is built in and so has a
name already—alert) are included in the script, but notice that all of the variable
names and function references use the same combination of upper- and
lowercase characters. The string message for the alert function reads, "Your
total is $" +Total);. The first use of total is part of a message (string literal)
and is not a variable in this case. The Total attached to the end of the alert
message, however, is a variable, and it uses the uppercase first letter as the
variable does when it is defined. Likewise, the argument in the function (item) is
always referenced in lowercase because it is initially written in lowercase. The
variable declaration lines beginning with var signal the initial creation of a
variable, and the case configuration used in those lines is the configuration that
must be used throughout the page in reference to a given variable. Chapter 3,
“Dealing with Data and Variables,” explains developing variables in detail.

Figure 2.1 shows what you will see when the page loads and you click the link
text. If you want a link to launch a JavaScript function, you can use a “dummy”
link by inserting a pound sign (#) where the URL usually is placed. Then, by
adding an event handler, you can launch the function. Try changing the value in
the addTax() function to see what you get. Also, see what happens when you
change addTax to ADDTAX().

Figure 2.1. None of HTML is case-sensitive, but virtually
all of JavaScript is.

Entering Comments

Comments are messages to yourself and others who are working to develop a
JavaScript program with you. They serve to let you know what the following lines
of code do or, if incomplete, what you want them to do. Comments in JavaScript
are entered by prefacing a line with double forward slashes (//). When the code
is parsed in the browser, all of the lines beginning with the double slashes are
ignored. For example, the following code segment shows a reminder to add tax to
an item in an e-business application:

//Include a variable to add taxes

tax= .06
//Add the tax to the taxable item
item += item * tax

The bigger and more complex your scripts become, the more you will need to
have well-commented code. Comments in code become even more crucial when
you are working with a team to create a web site and others need to know what
your code is doing. In this book, you will see comments throughout the code in
the larger scripts to point out different elements. In shorter scripts, the
comments are in the text of the book, a luxury that you will not have in your own
coding. Remember to comment your code, and you will see that you can save a
good deal of time reinventing a solution that is already completed.

The Optional Semicolon

Several languages that look a lot like JavaScript require a semicolon after lines.
For example, Flash ActionScript and PHP (see Chapter 14, “Using PHP with
JavaScript,” and Chapter 18, “Flash ActionScript and JavaScript”) both require
semicolons. Likewise, compiled languages such as C++ and Java require
semicolons at the end of lines. JavaScript made semicolons optional.

So, the question is, do you really need the semicolon? JavaScript places
“invisible” semicolons at the end of each line, and by placing a visible semicolon,
you can better see what’s going on. For debugging your program, the semicolons
alert you to where a line ends; if you did not intend a line to end where you put a
semicolon, you can better see the error. Hence, the answer to the question of
whether you should include semicolons is “yes.”

Semicolons go at the end of lines that do not end in a curly brace or to separate
variable declarations on the same line. For example, the following two code
segments show where semicolons may optionally be placed.

function findIt() {
 if(x="searchWord") {
 document.formA.elementA.value=x;
 }
}

Because four of the five lines end in a curly brace, only the third line optionally
can have a semicolon. On the other hand, in a list of variable definitions, you can
place a semicolon at the end of every line.

var alpha="Apples";
var beta= alpha + "Oranges";
var gamma= Math.sqrt(omega);
var delta= 200/gamma;

Older Browsers

At the time of this writing, Netscape Navigator 6.01 is in general release for both
Windows and Macintosh operating systems, and Internet Explorer has a Version 6
in public preview for Windows and is in Version 5.5 on the Macintosh. By the time
this book is published, both major browsers will most likely have Version 6 as
their standard browser. Keeping in mind that the browsers are the interpreters for

JavaScript, the version of browser that others use to view your scripts is very
important. Version 3 browsers will read most JavaScript, but not until Version 4 of
the two major browsers was JavaScript 1.2 available. Therefore, you really need
your viewers to have at least Version 4 of either major browser for use with code
from JavaScript 1.2. A guy in Outer Mongolia with an Internet connection has the
same access to a new browser as a guy in Silicon Valley; all he has to do is to
download and install either browser for free.

However, to get around the holdout who thinks that technology ended with his
Version 2 Netscape Navigator, you can enter a simple set of semitags to mask the
JavaScript. Because the older browsers don’t know JavaScript from Sanskrit, they
think that the code is text to be displayed on the page. To hide the JavaScript,
you can place the container made up of <!-and //--> around the JavaScript code.
For example, the following script segment is hidden from older browsers, and
their parsers will skip over it:

<script language="JavaScript">
<!-
document.write("The old browsers cannot read this.")
//-->

Rarely do you find anyone still using browsers older than Version 4, and unless
you want to degrade your JavaScript to an earlier version, you can include the
masking container. However, at this point in browser development, it might be
wiser to let the visitor know that her browser could use an upgrade by allowing
JavaScript to appear on the screen. (A few cantankerous designers even use
notes telling the viewer to upgrade his browser or get lost!)

Some designers attempt to write JavaScript with different sets of code for users
with very old browsers by using browser-detection scripts written in JavaScript.
In that way, users with older browsers can see some web page. In terms of cost
benefits, having alternative sets of code for different browsers, different versions
of browsers, and browsers for different platforms can become an onerous and
expensive task. However, each designer/developer needs to decide her own
willingness to have several different scripts for each page. With short scripts and
a few pages, only a little extra work is required. However, with big sites and long
sets of code, designers might find that they have to increase their time on the
project and that they must charge their clients, or use the lowest common
denominator of JavaScript.

Naming Rules and Conventions

All the rules for naming functions and variables discussed previously in the
section on case sensitivity apply. If you name your variables or functions
beginning with any letter in either uppercase or lowercase or with an underscore
or dollar sign, the name is considered legitimate. For the most part, in naming
variables, avoid using dollar signs as the first character because they can be
confusing to Basic programmers, who might associate the dollar sign with a string
variable, or PHP programmers, who begin all variables with a dollar sign.

You cannot have spaces in the names that you use for variables or functions.
Many programmers use uppercase letters or underscores to make two words
without a space. For example, the following are legitimate variable names where
a space might be used in standard writing:

Bill_Sanders= "JavaScript guy";
BillSanders= "JavaScript guy";
Free$money="www.congame.html";

Whether to use an underscore or a cap to begin a new word in a variable or
function name is your own preference.

Reserved Words

Reserved words are those in JavaScript that have been reserved for statements
and built-in functions. If you use a reserved word for a variable or function name,
JavaScript might execute the statement or function for the reserved word and not
your variable or function. For example, if you use the reserved break for a
variable name, JavaScript might attempt to jump out of a loop. Table 2.1 shows a
list of current and future JavaScript reserved words.

Table 2.1. Reserved Words
abstract final public

boolean finally return

break float short

byte for static

case function super

catch goto switch

char if synchronized

class implements this

const import throw

continue in throws

debugger instanceof transient

default int true

delete interface try

do long typeof

double native var

else new void

enum null volatile

export package while

extends private with

false protected

You should also try to avoid words that you will find used in statements, methods,
and attributes. For example, name and value are attributes of forms and should
be avoided. As you learn more JavaScript, try to avoid the new words that you
learn as names for variables and functions.

A Weakly Typed Language Means That JavaScript Is
Smart

One last characteristic of JavaScript needs to be discussed before going on to the
next chapter. JavaScript is considered a “weakly typed” or “untyped” language.
The type in question here are the data types—nothing to do with typing from your
keyboard. For programmers coming from C++ or Java, two strongly typed
languages, this means that JavaScript will figure out what type of data you have
and make the necessary adjustments so that you don’t have to redefine your
different types of data. Designers new to programming will welcome a weakly
typed language because it will save time in learning several different conversion
steps and data type declarations.

For example, suppose that you’re setting up an e-business site with lots of
financial figuring that you want to slap a dollar sign on when all of the
calculations are finished. Performing calculations involving money requires
floating-point numbers. However, as soon as a dollar sign is added to the number,
it becomes a string variable. In strongly typed languages, you need to convert
the floating-point number to a string and then concatenate it with the dollar sign.
Consider the following example using JavaScript to add five different items and
placing the whole thing into a string.

WeaklyType.html
<html>
<head>
<script language="JavaScript">
var apples=1.43;
var oranges=2.33;
var pears=4.32;
var tax=.04;
var shipping=2.75;
var subtotal=apples + oranges + pears;
var total=subtotal + (subtotal * tax) + shipping;
var message="Your total is $";
var deliver= message + total +".";
document.write(deliver);
</script>
</head>
<body bgcolor="indianred">
</body>
</html>

Of course, when the calculations are all complete, you could drop the decimal
points to two, as was done in the example script VarFuncCase.html in the
previous section. However, the point is that no type definitions were required.
Strings and numbers were merrily mixed with no cause for concern. Although the
term “weakly typed” might imply some deficiency with JavaScript, the term
actually means that JavaScript is smart enough to do the work of determining
what type of data any given variable should be. In learning about data types and
variables in the next chapter, you will be very grateful that JavaScript (and not
you) does most of the work in figuring out data types.

Summary

The purpose of this short chapter has been to get you off on the right foot when
you begin writing your own scripts. The most frustrating experience in learning

how to program a new language is debugging it when the outcome is not the one
expected. By paying attention to certain details and learning a set of rules for
writing JavaScript, not only are you less likely to run into bugs when you create a
page that includes JavaScript, but you are more likely to locate and correct them
when they do pop up.

Chapter 3. Dealing with Data and
Variables

CONTENTS>>

• Literals
• Variables
• Primitive and Compound Data
• Arrays

While the heart of a scripting or programming language is contained in its
statements and structure, its utility is in the way the language handles data. As
noted in Chapter 2, “An Orientation to JavaScript,” JavaScript is a weakly typed
or untyped language, so the burden of keeping track of data types is left largely
to the inner workings of the language.

However, JavaScript is more sophisticated than you might expect of a weakly
typed language. In addition to strings, numbers, and Boolean values, JavaScript
data can include objects, including arrays and functions. Each of these data types
is important to understand before proceeding so that when you’re working on
your design, you can decide which data types are required to create a certain
effect. If you’re new to programming, you might need to study the data types
carefully; while a newcomer to programming need not fully understand all the
nuances of the data types immediately, trying out different types of data and
experimenting with their characteristics is important. Later, as you gain
experience, you will be able to solve many design problems with a clear
understanding of the types of data that JavaScript generates and you’ll be solving
programming problems that help execute your design.

Literals

The raw data that make up the root of data types are called “literals.” These are,
in effect, literally what they represent themselves to be. Numbers, strings, and
Boolean values make up the core set of literals in JavaScript. Little mystery exists
with literals, but important differences exist between them.

Numbers

The fundamental data in most computer languages are numbers. Because
JavaScript is weakly typed, all numbers are treated as floating-point, so you need
not distinguish between integers and floating-point literals. All of the following
values are treated as numeric literals:

223.48
20
0

500.33

When assigning numeric literals to names (identifiers), you simply write them in
their raw form, with no required quotation marks or other characters, to
represent decimal values. With numbers other than decimal values or very large
numbers, special requirements exist.

Scientific Notations

If you need scientific notations or are returned a value written in a scientific
notation, you will be glad to know that they are written in standard format. For
example, you might see the value 9.00210066295925e+21 on the screen after
your script has calculated some really big numbers.

The letter e is followed by a plus or minus sign and from one to three integers.
(The sign is placed in a returned result but is optional if you write your own
notation.) The integers following the e are the exponent, and the rest of the
number (preceding the e notation) is multiplied by 10 to the power of the
exponent. In most JavaScript applications, numbers with scientific notations do
not appear, but if they do, they are treated for purposes of calculations just like
any other number.

Hexadecimal Literals

Base 16 or hexadecimal literals have a special preface to alert the parser that the
combination of numbers and letters is indeed made up of special values. All
hexadecimal literals are prefaced by 0x (zero-x), followed by 0–9, A–F characters
indicating a hexadecimal value. For example, the color red in hexadecimal is
FF0000; in JavaScript, it is written as 0xFF0000.

All calculations done in hexadecimal values in JavaScript are returned as decimal
values. For example, if you add 0xa8 to 0xE3, the resulting value in decimal is
395 instead of the hexadecimal value 18b. Fortunately, JavaScript provides a way
to express hexadecimal values using the toString() method. (The decimal-
tohexadecimal conversion script in Chapter 1, “Jump-Starting JavaScript,” used
the same method.) By including the number base as an argument, you can return
a hexadecimal value. The following script shows how.

hexNota.html
<html>
<head>
<title> Hexadecimal Values </title>
<script language="JavaScript">
var alpha=0xdead;
var beta=0xbeef;
var gamma=(alpha + beta).toString(16);
document.write(gamma);
</script>
</head>
<body bgcolor="springgreen">
</body>
</html>

Hexadecimal values’ most familiar application in JavaScript and HTML is as
sixcharacter color values. It requires no calculations for a color other than

conversion from decimal. However, many other occasions might arise in which
calculations using hexadecimal values occur, and knowing how to generate
hexadecimal results in JavaScript can be useful.

Strings

Like other programming languages, string literals are text. Any set of characters
placed in quotation marks (single or double) make up a string literal. For example,
the following are all string literals:

"JavaScript makes things jump."
'1-2 Buckle your shoe'
"54321"
"200 Bloomfield Avenue"
'My dog is named "Fred"'

Numbers in a string are treated as text, not as values that can be calculated.
Quotation marks within quotation marks need to be nested. That is, if the initial
quotation is a double quote, the two single quote marks must be within the
double quotes, or vice versa, as in the last example. For example, the output of
the string literal ‘My dog is named “Fred”’ returns

My dog is named "Fred"

The Escape Sequence for Strings

You may also include escape characters and sequences by prefacing a code with a
backslash (\) for additional control over string literals. For example, the literal \’
prints an apostrophe without affecting the literal itself. Other escape codes
include the following:

• \n New line
• \’ Single quote or apostrophe
• \” Double quote
• \\ Backslash

The following script shows how you can use strings, including escape sequences,
to order the output in an alert() function.

escape.html
<html>
<head>
<title> Escape </title>
<script language="JavaScript">
var alpha="Welcome to Bill\'s Burgers\n";
var beta="_____________________";
var gamma="\nThe \"Best\" you can buy."
alert(alpha + beta + gamma);
</script>
</head>
<body bgcolor="palegoldenrod">
</body>
</html>

Figure 3.1 shows the outcome that you can expect when you launch the program.

Figure 3.1. JavaScript uses escape sequences to format
data.

While the formatting using the escape sequences works well with the alert()
function, it does not work the same with document.write(). The character
substitutions for apostrophes and quotes return the same results, but the \n
(new line) sequence does not. Because document.write() places text into the
HTML page itself rather than a special box, as do the alert() and prompt()
functions, you can use HTML tags such as
 to achieve a new line with
document.write(). However, if you attempt to use HTML formatting tags with
the alert() or prompt() functions, you will find that they either will not work
as expected or will not work at all.

Boolean Values

A Cork University professor named George Boole developed a mathematical
system of logic that became known as Boolean mathematics. Much of the logical
structure of computer engineering and programming is based on Boole’s system.
The Boolean values in JavaScript are two literals, true and false (1 or 0, yes or
no). The Boolean literals are derived from logical comparisons, testing a truth
value and then using that value (true or false) for another operation. Most
common Boolean tests and values are found in conditional statements that have
this form:

If a condition is true
 Flag=true
Else
 Flag=false

Using the flag value, different paths are followed, usually in the form of a
statement. Chapter 5, “JavaScript Structures,” covers conditional statements in
detail; in that chapter, you will see extensive Boolean literals used.

Another way that a Boolean literal is generated and used is with comparison
operators. For example, the following sequence results in a Boolean literal of
false, 0, or no for the c variable. (The > operator represents “greater than.”)

var a=10;
var b=20;
var c=(a > b);

The Boolean literal is automatically changed by JavaScript to a true/false, 1/0,
or yes/no value, depending on the context. For example, the following little script
uses the Boolean literal to generate a value much larger than 1:

<html>
<head>
<title> Boolean </title>
<script language="JavaScript">
var a=5;
var b=6;
var c=(a<b)
var d="Your stock is worth " +(c * 25)+" thousand dollars.";
alert(d);
</script>
</head>
<body bgcolor="blanchedalmond">
</body>
</html>

Figure 3.2 shows the calculated output in JavaScript.

Figure 3.2. The output in the alert box has been
formatted with the calculated results of the JavaScript

program.

Whenever a result is true (1 or yes), JavaScript automatically looks at the
context of the literal’s use and makes the appropriate changes. Simply

multiplying by 1 or 0 makes a huge difference because multiplying by 0 always
results in 0. Sometimes, using tricks with Boolean values, you can save steps in
your programs and do some interesting things that you would not be able to do
otherwise.

Calculations and Concatenations

JavaScript numbers and strings sometimes share common operators, and others
are used with numbers only. Chapter 4, “Using Operators and Expressions,”
covers all the operators and how they are used, but the basic arithmetic
operators of addition, subtraction, multiplication, and division are +, -, *, and /,
respectively. The plus sign (+) is used both for adding numbers and concatenating
strings. String concatenation refers to binding one or more strings into a single
string. For example, this returns New Riders:

var firstName="New";
var lastName="Riders";
var gap=" ";
var publisher=firstName + gap + lastName;
document.write(publisher);

The plus sign (+) joins the three string variables firstName, lastName, and gap.

In addition to the basic math operators, JavaScript has both Math and Number
objects for more complex operations and constants. Chapter 7, “Objects and
Object Hierarchies,” deals with these objects, but you should know of their
availability for special number cases and complex math. The Math object has
been employed in some of the examples where a conversion was required. For
example, Math.floor() was used in Chapter 1 to convert the value of a form
window into a number. All data entered into a text window are treated as text, so
by using the Math.floor() function, it was possible to both round any value
down to the nearest integer and convert it to a number. Elsewhere in this chapter,
the toString() function changed a decimal value into a hexadecimal string
representation.

Two important built-in functions may also be used for string and number
conversions, parseFloat() and parseInt(). The following script shows how
these two different functions work.

parseString.html
<html>
<head>
<title> Parse them Strings! </title>
<script language="JavaScript">
var elStringo="14.95";
var laStringa="32 on sale";
var newVal=parseFloat(elStringo);
var hotVal=parseInt(laStringa);
document.write("Your total is: $" + (newVal+hotVal));
</script>
</head>
<body bgcolor="gainsboro">
</body>
</html>

Two strings containing numbers, elStringo and laStringa, are converted into
numbers. The parseFloat() method takes both numbers and the first decimal
and numbers beyond the first decimal. When it encounters a non-number after
the first decimal point, it ignores characters and the function transforms the
values to the left into a floating-point number. The parseInt() method parses
numbers until the first non-number is encountered. Everything to the left of the
first non-number is converted into a number. (Because all numbers in JavaScript
are essentially floating-point numbers, the “integer” is simply a floating-point
value with no decimal value other than zero.)

Objects as Literals

Objects are a collection of properties. While objects are discussed in detail in
Chapter 7, you should understand that they can be treated as literals and placed
into variables. In designing a dynamic web site, you can create the objects that
you need in JavaScript and use them repeatedly on different pages. Think of
objects as “design clusters” that can be placed where you need them.

As a collection of properties, objects can be used to create very useful tools and
serve as the basis of object-oriented programming. To create an object, you first
give it a name as a new object:

var shopCart = new Object();

When you have established your object, you can begin adding properties to it:

var shopCart.item = 5.95;
var shopCart.tax = .06;
var shopCart.shipping = 14.95;

When making object literals, each property can be defined within curly braces,
with the properties separated by commas. Each property is separated from its
value by a colon.

The following shows a simple example of how to work with object literals:

var shopCart = { item: 5.95, tax: .07 , shipping: 14.95 };

The outcome is identical to the first set of object properties defined previously,
but the format is different. Object literals, along with other characteristics and
uses of objects, are revisited in Chapter 7 in more detail. For now, it is enough to
understand that object literals constitute one of the data types in JavaScript.

Functions as Literals

Chapter 6, “Building and Calling Functions,” covers functions in detail. In this
section, the focus is on functions as a data type. Functions can be built-in or
user-defined. A user-defined function has this form:

Function functionName(optional argument) {
Commands, statements, definitions

} //function terminator

Functions can be launched in different places in a program and serve as self-
contained groupings of code to accomplish one or more tasks in a program.

However, JavaScript has the capability to include a function in a variable as a
literal. For example, using the Base 16 conversion with the toString() method,
it’s possible to create a literal that converts decimal to hexadecimal. Base 16 is
the name used for hexadecimal values. The decimal system is Base 10 because
the number system is based on 10 characters, 0–9. Base 16 has 16 characters,
0–F. The following script changes three decimal values into a single hexadecimal
value and slaps a # sign on the front to remind you that it’s a hexadecimal value.
The function named converter that does the conversion becomes a literal in a
variable definition. The converter function runs three times to generate color
values for the R, G, and B values.

functionLit.html
<html>
<head>
<title> Function Literal </title>
<script language="JavaScript">
function converter(decNum) {
 if (decNum >=16) {
 return decNum.toString(16);
 } else {
 return "0" + decNum.toString(16);
 }
}
var colorIt="#" + (converter(255) + converter(108) + converter(4));
document.write(colorIt);
</script>
</head>
<body bgcolor="ghostwhite">
</body>
</html>Objects

You can never have too many decimal-to-hexadecimal conversion scripts.
Compare the previous conversion script with the one in Chapter 1. All the decimal
input for the one in this chapter is in the script, and all the data use functions as
literals.

Undefined and Null Values

Two other types of data, null and undefined, should help you better understand
a little about how JavaScript deals with variables. Both generally signal something
that you forgot to do, but sometimes they are a planned part of a script.

An undefined value is returned when you attempt to use a variable that has not
been defined or one that is declared but that you forgot to provide with a value. A
nonexistent property of an object also returns undefined if it is addressed.

On the other hand, null amounts to a “nothing literal.” You can declare and
define a variable as null if you want absolutely nothing in it but you don’t want it
to be undefined. Null is not the same as zero (0) in JavaScript. In some
situations, you will want to find the result of a calculation, which could be zero;

rather than putting in a zero to begin with, you can place a null in a variable. In
that way, when data does come into a variable, you will know that the value is
part of the calculation and not a default zero that you placed there. The following
little script shows the different outcomes when a variable is undefined and when
it is null.

nullUndef.html
<html>
<head>
<title> Null and Undefined </title>
<script language="JavaScript">
var nada;
var noVal=null;
document.write("No value assigned and the variable is " + nada +
".<p>");
document.write("A null value was assigned and returns " + noVal +
".");
</script>
</head>
<body bgcolor=#BadCab>
</body>
</html>

Regular Expression Literals

Regular expression (RE) literals are advanced programming concepts and
constitute almost a whole new language. In fact, learning the regular expression
nomenclature will prepare you for much of Perl. (Chapter 16, " CGI and Perl,"
covers working with JavaScript, CGI, and Perl.) The easy part of regular
expression literals is that they are identified by slashes (/), as strings are with
quote marks. The following are some examples of RE literals:

/do/
/[a-k]/
/[^l-z]/

The meaning of the RE literals is another matter. Typically, RE literals are used
with sequences or groups. Groups are placed in brackets ([]), and sequences are
indicated by a dash (-). For example, a group of letters that you might want to
match might be l, k, and r. Any one of these letters would be recognized if
placed into a class /[lkr]/, while a word such as fun would be patterned as
/fun/ in an RE literal. (A class in regular expressions refers to a group of
characters to match.) A range of characters or digits would be placed in a pattern
such as /[b-s]/ or /[5-9]/. Anything that you don’t want is prefaced by a caret
(^), as in /^blink/.

For the designer, regular expressions are important for searching for different
elements of strings. If your design requires finding keywords entered by
customers looking for certain products, you could use regular expressions to
search for the product and provide feedback to the customer about whether it is
available.

An example of an RE literal can be seen in a global replacement of one word for
another in the following script.

regExp.html
<html>
<head>
<title> Regular Expression Literal </title>
<script language="JavaScript">
var work="Working with JavaScript is hard work but rewarding work.";
var play=work.replace(/work/gi, "play"); //Regular expression
document.write("<p>" + work + "<p>" + play);</script>
</head>
<body bgcolor="navajowhite">
</body>
</html>

The RE literal work.replace(/work/gi, “play”); commanded the variable
named work to have all instances of the word work (/ work/) be globally (g)
replaced, ignoring case (i), by the word play. The output for the script is shown
in Figure 3.3.

Figure 3.3. Using regular expressions in variables, parts
of a string can be changed.

Because cases are being ignored, “Working” becomes “playing.” Otherwise, the
variable containing the RE literal simply took the first string and replaced it with
the second following the rules of regular expressions.

In Chapter 16, you will revisit regular expressions in Perl and see how JavaScript
can use regular expressions themselves in dealing with data in a CGI bin.

Variables

If you have been following the book sequentially, by this point, you probably have
a pretty good idea what a variable is from all of the examples. You’ve been
provided with several of the rules for providing names and values for variables as
well. This section examines variables in detail and spells out what you can do with
them and how to use them.

I like to think of variables as containers on a container ship. You can put all
different types of content into the containers, move them to another port, empty
them, and then replace the container with new content. However, the container
ship analogy suffers when you realize that the content in the containers must
have magical properties. If you have a container full of numbers and you add a
string, the whole container magically becomes a string. Because JavaScript is
untyped (or weakly typed), both the contents and the characteristics of the
variable can change. The main point, though, for readers new to the concept of a
variable is that variables are containers with changeable contents.

Declaring and Naming

JavaScript, like most scripting languages, has two basic ways of declaring a
variable. First, as you have seen throughout the book up to this point, variables
are declared using the var word. You simply type in var followed by a variable
name and value. The following are typical examples:

1. var item;
2. var price= 33.44;
3. var wholeThing= 86.45 + (20 *7);
4. var name="Willie B. Goode";
5. var address "123 Elm Street";
6. var subTotal=sumItems
7. var mixString= 11.86 + "Toy Cats";
8. var test = (alpha > beta)

By taking each variable one at a time, you can see how the different data types
discussed are placed into a variable:

1. The first example demonstrates that you can declare a variable but not
give it a value. As you saw previously in this chapter, such variables have
an undefined value.

2. The second variable contains simple primitive data—a numeric literal with
a value of 33.44.

3. The third variable is a compound variable made up of a numeric primitive
and a compound expression.

4. The fourth variable is defined as a simple string literal.
5. The fifth variable is also a simple string literal, but it uses a mix of digits

and letters.
6. Sixth, the variable is defined with another variable.
7. The seventh variable is a mix of a numeric primitive and a string primitive,

creating a string variable.
8. Finally, the last variable is a Boolean value derived from compound data.

Declaring a variable alerts the computer to the fact that a new variable is
available to use. After a variable is declared, it need not be declared again. For
example, in loop structures, the counter variable can be defined in the initialize
section, but not in the test or change (increment/decrement) sections. For
example, the following code segment shows that the variable named counter is
declared in the first segment but then is not declared again:

for (var counter=0; counter < 40; counter++) {....

Some programmers like to initialize all of their variables at the beginning of a
script with undefined values. Then later they can use them without having to
remember to add var. Also, you can have a single line with several variable
definitions, with each variable separated by a comma or a semicolon, as the
following script illustrates.

clutter.html
<html>
<head>
<script language="JavaScript">
var a=20; b=30, c="wacka wacka do"; gap=" ";
document.write(a+ gap + b + gap +c);
</script>
<body bgcolor=#C0FFEE>
</body>
</html>

I generally avoid declaring more than a single variable on a line. Multiple
declarations in a line, while workable, can clutter what has been defined and what
a variable has been defined as. The script clutter.html amply illustrates such
confusion. (By the way, the character following the c in the bgcolor value is a
zero, [0], not a capital O.)

You may omit the var keyword in your variable declarations, and you
undoubtedly will see scripts in which the programmers have done so. For example,
the following are perfectly good examples of such declarations:

acme = "The Best";
cost = 23.22;

While JavaScript accepts these declarations for global variables, you can run into
problems elsewhere by omitting var. (See the note in the following section.) Thus,
for a good programming habit that will avoid problems, always use the var
keyword when declaring a variable.

Global and Local Variables

Variables in JavaScript have scope. The scope refers to the regions of the script
where the variables can be used. A global variable, as the name implies, has
global scope and is defined in the entire script. Local variables are local to the
functions in which they are defined. As a general rule, avoid naming any two
variables, whether local or global, with the same name or identifier.

NOTE

While using the keyword var is optional in declaring global variables, problems
can arise if you do not incorporate var in defining your local variables. When
using var in a local variable declaration, the program recognizes it as a local
variable, not a change in the value of a global variable. With no var keyword
used, your script cannot tell the difference, and you risk inadvertently changing
the value of a global variable. The moral to this story is to always use the var
keyword for variable declaration.

Within a function, a local variable has precedence over a global variable of the
same name. So, if your global variable named ID has the value Fred, and a
function also with a variable named ID has a value of Ethel, the name Ethel will
appear when the function displays the variable’s value. However, if you display
the value of the ID variable from outside the function, the value will be Fred.

The following script uses four variables to demonstrate these differences. Two
global variables are defined, and then two local variables are defined within a
function. One of the global and local variables share a common identifier,
localGlobal. When fired from the function, the local variable’s value is displayed;
when displayed from the global script, the global variable’s value is displayed.

GlobalLocal.html
<html>
<head>
<script language="JavaScript">
var onlyGlobal="This variable is only global!";
var localGlobal ="I\'m global now!";
 function showMe() {
 var localGlobal="I\'m now local";
 var onlyLocal="Only works on the local level."
 alert(localGlobal + " -- " + onlyLocal);
 }
showMe();
document.write(onlyGlobal + "<p>"+ localGlobal);
alert(onlyGlobal);
</script>
<body bgcolor=#CadDad>
</body>
</html>

Figure 3.4 shows what your page will look like the second time you open it.
Initially, you will see only a blank page with the alert box, but after the second
alert, you can see both the values from the local and global variables on the
screen simultaneously.

Figure 3.4. Global and local variables of the same name
can return different values.

In Chapter 6, where functions are discussed in detail, you will learn how to
maximize the use of global and local variables in functions. In the meantime, just
remember to keep everything between the two types of variables straight by
using the var keyword in all your variable declarations.

Primitive and Compound Data

Data types are divided into two basic categories, primitive and compound.
Boolean values, numbers, strings, and the null and undefined values all
constitute primitive data types. As you have seen, different data types are
handled differently.

Compound data types are made up of more than one component. Two primitive
data types, such as 10 multiplied by 7, can make up compound data. Compound
data can have components made up of other compound data, made up of other
compound data, ad infinitum. Compound data can mix and match different data
types as well.

In addition to a multiple of primitives, compound data are made up of arrays and
objects. By definition, arrays and objects are made up of more than one object.
Arrays are a collection of elements, and objects are a collection of properties.
JavaScript objects are discussed in detail in Chapter 7, and arrays are examined
at the end of this chapter.

In storing the two different data types, JavaScript uses two very different
strategies. Primitives are stored in a fixed chunk of memory, depending on the
type of primitive data. Because a Boolean literal is either true or false (1 or 0),
a Boolean can be stored in a single bit, while a number can take up several bytes.
What is important is that primitives have a finite and known amount of space in
memory and can be stored with the variables.

Compounds, on the other hand, can get quite complex, as is the case with objects,
regular expressions, and functions. Rather than having a space in memory for
compound variable values, JavaScript has pointers or references to the values. In
other words, the variables themselves are made up of directions to locate their
value rather than the actual value.

Calling strings “primitives” can be a bit misleading because they are obviously
anything but fixed in size. They are considered immutable, meaning that the
string value cannot be changed. So, if the value of a string cannot be changed,
how can a variable with the value Tom be changed to a value Jerry ? Obviously, a
pointer has to point to the changed value, but strings act like primitives;
therefore, I treat them as primitives.

Arrays

Because objects are collections of properties with each property having its own
name and value, arrays are actually JavaScript objects. Each property in an array
is an element, and each element can be assigned a value. One way to think of an
array is as a collection of numbered variables.

An array in JavaScript has the following general formats for assigning values to
elements:

sampleArr[0]=1;
sampleArr[1]="ice cream";
sampleArr[2]=55 * (7 + alpha);
sampleArr[3]= shootTheMoon(73);
sampleArr[4]= otherArr[7];

or

sampleArr=new Array(1,"ice cream", (55 * (7+ alpha)),
shootTheMoon(73),
otherArr[17]);

or, in JavaScript 1.2 or later:

sampleArr=[1,"ice cream", (55 * (7+ alpha)), shootTheMoon(73),
otherArr[17]];

All three arrays are identical, using different methods for data assignment. The
second two methods show the array to be more of an object, while the first
method shows the variable-like characteristics of arrays.

In JavaScript, array elements begin with 0 and can be numbered sequentially or
nonsequentially. In the second two previous examples, the first element is 0, and
the other data separated by commas are numbered sequentially. However, you
could have the following data assignment in an array:

alphaArr[0]= "uno";
alphaArr[7]= "dos";
alphaArr[345]= "tres";

Usually, arrays are numbered sequentially so that data can be added and
extracted using loops. However, an array element can be called forth in any order
and used just like a variable.

The data and data types that can be assigned to an array element are identical to
the data and data types that you can assign to variables. You will also find that
you can assign objects the same kinds of data. (Remember that an array is an
object because it is composed for more than a single property.)

Setting Up an Array

Arrays are created using a constructor, just like other objects. The Array()
constructor uses the following format:

var parts = new Array();

Now, parts is an array object, and you can add data as in the following format:

parts[0]= "bolts";
parts[1] = "nuts";

As with declaring a variable, you need not enter data upon declaring the array,
but you can. For example, you may declare and define a dense array using the
Array() constructor:

var parts = new Array("bolts", "nuts", "washers", "screws");

You can also create an array using a dimension argument. If you know ahead of
time how many elements are in your array, you can declare it and set a
dimension for it at the same time. (In some languages, especially older ones, you
are required to include a dimension for an array to reserve memory for your
array.) For example, if you are creating an array of the U.S. Senate and you
know that you have only 100 senators, you could declare and dimension your
array as follows:

var senators= new Array(100);

Once declared and dimensioned, you can add 100 elements, but the first senator
would be this:

senators[0]

The last would be this:

senators[99]

You still get 100 elements, but you must begin with 0 instead of 1.

The declaration using a dimension argument is the exception to the rule that the
first data value in a dense array (one in which the data are contained in
parentheses) is considered element 0. Element 0 in the array will be the first data
assignment after the declaration. For example, the following declaration first

dimensions the array at 5 and then enters the first array element (0) as 7 in the
next line:

var catWeights= new Array(5);
catWeights(7,15,34,52,60);

The numeric data value 5 is not a value of any of the array elements. It is the
length of the array, with elements ranging from 0–4.

NOTE

Throughout the book, I use the tag <script language="JavaScript"> without
specifying the version number of JavaScript. You do not need to specify the
version number to get the latest version of JavaScript supported by your browser.
When using a dimension argument with Netscape Navigator 4 (NN4) and later,
you will run into a bug if you specify <script language="JavaScript1.2"> and
then attempt to dimension an array. NN4+ treats the declaration with the
dimension value as the first value in the array instead of the length of the array.
For example, try the following script:

<html>
<head>
<script language="JavaScript1.2">
var test= new Array(23)
document.write(test.length);
</script>
</head>
<body>
</body>
</html>

When you run the script using NN4 or later, a 1 appears on the screen. If you
remove the 1.2 attribute from the <script> tag, the returned value is 23, the
correct length. Because JavaScript 1.5 runs just dandy in Netscape Navigator 6
without specifying the version number in the <script> tag, and the latest version
for Internet Explorer also runs well without specifying the version number, I
prefer to leave out all version numbers as a habit. In this way, I can avoid bugs
and span more JavaScript and browser versions.

A final way to declare an array using JavaScript 1.2 or later is called an array
literal. The declaration uses brackets instead of parentheses and does not require
the Array() constructor. The array object name is declared simply by assigning
values to it within brackets, as the following script shows:

<html>
<head>
<script language="JavaScript">
var Lit= ["yes","no","maybe"];
document.write(Lit[2]);
</script>
</head>
<body bgcolor=#face00>

</body>
</html>

The literal array Lit looks almost like a variable definition, were it not for the
bracketed list of values. Using an array literal saves a couple of steps because no
constructor is used, but older browsers (those before support of JavaScript 1.2)
will not understand it as an array.

Array Properties and Methods

As an object, arrays have a single property, length, and several methods.
However, Netscape Navigator 4 introduced five methods, Array.pop(),
Array.push(), Array.shift(), Array.unshift(), and Array.splice(),
that are not supported either by Internet Explorer or the EMCA-262 standard. To
avoid problems but to be inclusive, I have placed the NN4+ array methods in a
section at the end of the chapter to alert you to the fact that users of IE will not
parse them correctly. Like all JavaScript enhancements not supported by the
EMCA standards, I do not recommend using these methods for creating web sites
that expect to have viewers using both major browsers.

Array Length

The single array property length returns the number of elements in an array.
When using a loop, the test condition for the loop can be the length of the array
so that you need not use an invariant value for the test. The format is as follows:

Array.length

The property is easily passed to a variable, as the following sample shows:

var dogs = new Array("Beagle","Terrier","Collie","Mutt");
var dogTail= dogs.length;

The variable dogTail would have a length of 4 because four elements make up
the array. The length property does not refer to the number of characters that
make up the element in the array, but it refers to the number of elements
themselves. Thus, the following array has a length of 2, even though more
characters are used than in the first example with a length of 4:

var dogs = new Array("Greater Swiss Mountain Dog","Irish Wolfhound");

Concatenating the Elements of an Array: join(),
toString(), and concat()

The Array.join() method takes all of the values in all of the elements in the
array and creates one big string. For example, try out the following script:

joinArray.html
<html>
<head>

<script language="JavaScript">
var trees= new Array("Elm","Pine","Oak");
var bigBush=trees.join();
document.write(bigBush);
</script>
</head>
<body bgcolor=#ace007>
</body>
</html>

The results are the contents of the array minus the quotation marks, showing you
Elm,Pine,Oak.

The Array.join() method accepts an argument that acts as a separator.
Whatever you place in the join() parentheses within quotation marks replaces
the commas. For example, change this line:

var bigBush=trees.join();

to

var bigBush=trees.join(" and ");

Then, launch the script again for a different result. The second results are Elm
and Pine and Oak.

An older method from JavaScript 1.1 that is similar to the Array.join() method
is Array.toString(). The toString() method generates the same results as
join(), but you cannot specify the connecting characters between elements as
you can with join().

A third method used for concatenating string elements in arrays is
Array.concat(). Not only does the concat() method join all existing elements,
but it also adds the elements in a concat() argument. For example, by changing
the joinArray.html script slightly, you can see how it works.

concatArray.html
<html>
<head>
<script language="JavaScript">
var trees= new Array("Elm","Pine","Oak");
var biggerBush=trees.concat("Maple", "Sycamore");
var bigBush=trees.join();
document.write(biggerBush);
alert(bigBush);
</script>
</head>
<body bgcolor=#ace007>
</body>
</html>

A very important part of the concatArray.html script is that you can see that the
Array.concat() method does not change the contents of the array. The array
named trees still has only three elements. That is evidenced by the fact that the

alert message shows only three elements, even though the variable bigBush was
defined after the biggerBush variable was defined and added the Maple and
Sycamore data to the mix. To add elements to an array, you assign new values to
named elements. For example, to include the Maple and Sycamore data to the
array, you could write this:

trees[3]="Maple"; // The fourth element is 3 since the first is 0
trees[4]="Sycamore";

Changing the Order of an Array: sort() and reverse()

Two methods are available to change the order of array elements. The first sorts
the array string elements alphabetically, and the second reverses their order.

The Array.sort() method is very simple, especially when using strings. After
entering all of the strings in the array, you just enter the name of the array and
method, and the array is ordered alphabetically. The following example shows
both how the sort() method works and how array elements are extracted with a
loop statement.

sortArray.html
<html>
<head>
<script language="JavaScript">
var zoo= new Array("zebras","lions", "apes","tigers");
zoo.sort();
var newZoo="";
for(var counter=0; counter<zoo.length; counter++) {
newZoo += (zoo[counter] + "
") ;
}
document.write("<p>Alphabetical Animals<p>" + newZoo);
</script>
</head>
<body bgcolor="lightsteelblue">
</body>
</html>

As you can see in Figure 3.5, all of the values are arranged in alphabetical order.

Figure 3.5. By placing string data into an array, you can
easily sort it using the Array.sort() method.

apes

lions

tigers

zebras

For ordering lists of any kind, you will find the Array.sort() method a handy
tool.

The Array.reverse() method simply reverses the order of the data in the array.
The first element becomes the last element, and everything else in the array is
reversed as well. For example, the following:

var majorCities=new Array("Tokyo", "Los Angeles", "Paris", "Beijing",
"Bloomfield")
marjorCities.reverse();

would return this:

Bloomfield, Beijing, Paris, Los Angeles, Tokyo

By using Array.sort() and Array.reverse() in concert, you can change
ascending and descending orders of a sorted list.

Extracting Subarrays: slice()

To specify a subarray, use Array.slice(). The general form of using slice()
is shown here:

ArrayName.slice(begin,end)

or

ArrayName.slice(begin to end)

For example, if you have these statements:

computer=["Dell", "Gateway","Apple","IBM","HP"];
computer.slice(2,4);

your return would be

Apple,IBM

Using a single argument takes the element from the argument to the end of the
array as defined by the argument. For example:

computer.slice(2);

would return

Apple,IBM,HP,

Negative numbers constitute a final type of argument used in the Array.slice()
method. The negative value begins with the last element in the array as –1 and
then counts backward toward the first element. For instance, the statement from
the example in this section:

computer.slice(-1)

returns this:

HP

Unlike the forward-counting slices that begin with 0, the last element in an array
is identified as –1 using the slice() method with an array.

Navigator 4 Core Array Methods: pop(), push(), shift(),
unshift(), splice()

This last set of methods adds a good deal of utility to working with arrays, and
you can perform stack-like operations with the array. If you’ve ever written
programs in Forth or written code for Adobe PostScript, you’ve worked with the
stack, and pop() and push() are familiar. Each of the five is described briefly
with a short explanation and is based on the following single example:

var stackWork= new Array("Lenny","Harold","Mary","Jean", "Sal");

Array.pop() removes the last element of an array and returns it.

stackWork.pop(); returns Sal and removes it from the array. If a second
identical statement were made on the next line, it would return Jean.

Array.push() adds a value to the end of the array (top of the stack) and leaves
it there. By adding the following line, the string Delia would become the value to
a new last element added to the array by the push() method:

stackWork.push("Delia");

In a pop() operation, it would be the first one off (LIFO—last in, first off).

Array.shift() removes the first element in an array and returns it. For
example, this would return Lenny, remove it from the array, and shift the
remaining elements to the left:

stackWork.shift();

Element 0 would become Harold.

Array.unshift() is similar to the push() method, except that the new
element is put at the front of the array (bottom of the stack). If you entered the
following, the first element (element 0) in the array would have a value of Willie,
the value Lenny would be shifted to the right into element 1, and so on for the
entire array:

stackWork.unshift("Willie");

Finally, Array.splice() is a method used to insert, delete, and substitute
values in array elements. The method has three arguments, start, delete, and
data. The starting position specifies where the new value (data) is to be inserted
and where deletions begin. If no deletions are specified, the splice() method
has the effect of inserting an element and value into an array. For example, the
following shows how to insert the value Fred into the second element, leaving the
first as it is and shifting the rest to the right:

stackWork.splice(1,0,"Fred");

The splice() method allows you to insert elements, delete one or more
elements, or change the value of an array element. You might find that these
functions do not work in some of the older browsers, but IE5+ and NN4+ work
well with them.

Summary

This chapter examined both the data types and the containers for data in
JavaScript. An understanding of data types and variables in JavaScript is essential
to working effectively with JavaScript because changes in the properties and
objects that make up JavaScript and HTML are dependent on controlling the

values in variables. Because the values are the data, all of the work with objects
depends on understanding how to use the data types and their containers,
variables.

In addition, array objects, along with the property and methods associated with
arrays, were introduced. Each element of an array has variable-like
characteristics, but an array is a very different breed of animal. With an object,
the web designer can use the built-in property and methods to order and change
the array elements. In further chapters, as more structures in JavaScript are
revealed, you will see far more applications for and the value of arrays.

Chapter 4. Using Operators and
Expressions

CONTENTS>>

• General and Bitwise Operators
• General Operators In Javascript
• Operators
• Precedence

The previous Chapters Made Extensive Use of both operators and expressions.
This chapter examines the operators and the expressions that they create. In
programming, the name “expression” is a bit misleading because both literals and
a combination of literals and variable names can be expressions. Thus, this
excerpt:

total

is an expression in a line of JavaScript code, as is this:

total + tax + 4.99

So, while an expression is usually envisioned as a combination of literals or
variables (complex expressions), expressions can be single variables or literals.

General and Bitwise Operators

To begin an examination of operators and expressions, two very different types of
operators are discussed separately. I will refer to nonbitwise operators as
“general operators” or simply “operators,” while bitwise operators are prefaced by
“bitwise.” In this next section, Table 4.1 shows an overview of what I call general
operators; near the end of the chapter, you will find a separate subsection and
Table 4.2 on bitwise operators.

Bitwise operators shift the binary numbers (0s and 1s) in the registers in your
computer. When binary numbers are shifted, special types of mathematical
operations occur that you normally associate with addition, subtraction,
multiplication, and division. To learn more about how this works, consult a good
book on binary math. Generally, though, designers do not need to use binary

operators or binary math, so if you skip over the section on binary operators, you
probably will not miss anything crucial to creating dynamic pages with JavaScript.

General Operators in JavaScript

The everyday garden-variety operators seen in a typical JavaScript program are
very similar or identical to the operators found in programs such as C++ or Java.
If you have a Basic or Visual Basic programming background, you will find many
similarities as well between JavaScript operators and what they use in different
types of Basic. However, while a quick glance at the operators shows where the
operators are similar and where they differ from your previous programming
experience, be sure to take that glance. For readers who are taking up JavaScript
as their first language, spend some time going over the examples and
descriptions of what the operators do (see Table 4.1).

Table 4.1. JavaScript Operators
Symbol Operation

+ Add or concatenate
- Subtract, or negative
* Multiply
/ Divide
% Modulus (remainder)
++ Increment

Symbol Operation
- Decrement
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
&& Logical AND
|| Logical OR
! Logical NOT
= = Test for equality
= = = Test for strict equality
! = Test for inequality
! = = Test for strict inequality
= Assignment
+ = Add and assign
- = Subtract and assign
* = Multiply and assign
% = Modulus and assign
/= Divide and assign
() Function arguments
. Structure member (called a dot) in structure or property
, Multiple evaluation
[] Array elements (access, index)
, Multiple evaluation

? : Ternary operator
new Constructor
delete Remove a variable
typeof Data type
void Return undefined value

Operators

Operators can be placed into three categories—binary, unary, and ternary. Binary
operators, most commonly associated with the concept of operator, take two
(binary) expressions and combine them into a third complex or compound
expression. However, a single expression can have several binary operators. For
example, the following variable declaration uses multiple binary operators to
define the variable:

var calcAdd = (total / n) + 73

The divide (/) operator and the plus (+) operator are binary operators. The first
combination occurs when the variable total is divided by the variable n. The two
variables become a single value. That single value resulting from total divided
by n is then added to the literal numeric value of 73, creating yet another value.
The equals sign (=) places the combined value of the operands into the variable
calcAdd.

Unary operators work on a single variable or literal. All negative numbers are
assigned using a unary operator. For example, the following little script uses a
unary operator to create a variable with a negative value:

<html>
<head>
<script language="JavaScript">
var posNum=85;
var negNum= -posNum;
document.write(negNum);
</script>
</head>
<body bgcolor="honeydew">
</body>
</html>

The return of the script is -85 because the minus (-) unary operator defined the
variable negNum as the negation of the variable posNum. Other common unary
operators include increment or decrement operators (++ and - -) seen in counter
variables.

Finally, ternary operators combine three expressions into one. Most commonly
used to create a shorthand expression for conditional statements, the only
ternary operator in JavaScript is ? :. For example, this conditional statement:

if(alpha == beta) {
 gamma=56;
 } else {

 gamma=57;
 }

can be written with a ternary operator as follows:

alpha == beta ? gamma=56 : gamma=57;

The following little script shows how both methods arrive at the same conclusion:

<html>
<head>
<script language="JavaScript">
var alpha=20, beta=30, gamma=0, lambda=0;
if (alpha==beta) {
var gamma=56;
} else {
gamma=57;
}
//Same set of conditions using ternary operator
alpha==beta ? lambda=56 : lambda=57;
document.write("Conditional results:" + gamma + "<p>" + "Ternary
conditional:" + lambda);
</script>
</head>
<body bgcolor="oldlace">
</body>
</html>

The three elements that the ?: operator brought together in the example are
(alpha==beta), (lambda=56), and (lambda=57). Note also how the comma (,)
operator is used in the script to separate the definitions of the variables alpha,
beta, gamma, and lambda at the beginning of the script.

Assignment Operators

The key assignment operator is the equals sign (=). The left operand is a variable,
an array element, or an object property, and the right operand is either a literal
or another variable, array element, or object property. As seen in Chapter 3,
“Dealing with Data and Variables,” assigning a variable a value can be
accomplished with any number of different combinations of variables, array
elements, object properties, and literals.

The following provides an idea of the range of assignments:

alpha= 77;
alpha= (fishSize.length / 2);
alpha= (beta > gamma);

Compound Operators

Operators that include assignment along with an operation are compound
operators. These operators work as a shorthand for an assignment plus another
operation. For example:

var bankAccount += interest;

is equivalent to writing

var bankAccount = bankAccount + interest;

Besides addition, compound operators in JavaScript include subtract assign (-=),
multiply assign (*=), divide assign (/=), and modulo assign (%=). For example,
the following script uses the modulo compound assignment operator:

<html>
<head>
<script language="JavaScript">
var bolts=150, lot= 60;
bolts %= lot;
document.write("Odd lot=" + bolts);
</script>
</head>
<body bgcolor="lightslategray">
</body>
</html>

The example shows how two operations can be combined into a single one. The
variable bolts is divided by the value of the variable lot, and the remainder
(modulo) is assigned to the variable bolts. It would be the same as writing this:

var bolts = bolts % lot;

However, instead of taking two operations, one does the trick of assignment and
operation.

Comparison Operators

Probably the area of most mistakes in JavaScript with operators is confusing (or
just forgetting) the difference between assignment operators and comparison
operators. Assignment operators equate a value with a variable, array element,
or object property. Comparison operators generate a Boolean value. For example,
the following script returns a false Boolean value:

<html>
<script language="JavaScript">
var wrong= (6==7)
document.write(wrong);
</script>
<body bgcolor="lightslategray">
</body>
</html>

The comparison operator is the double equals sign (= =), and the assignment
operator is the equals (=) sign. The most common problem is in a standard
conditional statement where the developer types this:

if (alpha = beta) { WRONG

when he meant to type this:

if (alpha==beta) { RIGHT

In the debugging process, one of the first things to look for is the placement of an
assignment operator where an equality operator should be.

The other comparison operators include not equal to (!=) less than (<), greater
than (>), less than or equal to (<=), and greater than or equal to (>=). Like the
equality operator, these other comparison operators have two roles. One role is
part of a conditional statement, and the other is to serve as Boolean literals in
definitions as the previous example showed. The following script shows how
variables can be defined so that they can contain Boolean literals and then used
as part of a conditional statement without the use of comparison operators:

<html>
<script language="JavaScript">
var alpha=25;
var beta=35;
var zeta=(alpha <= beta);
if(zeta) {
 var sigma ="This is true."
 } else {
 var sigma = "This is not true.";
 }
document.write(sigma);
</script>
<body bgcolor="lightslategray">
</body>
</html>

In the script, the variable alpha is compared to be less than or equal to (<=) beta
in the definition of zeta. Because alpha is less than beta, the variable zeta
contains a Boolean value of true. In the conditional statement, no comparative
operators are used because the variable beta is already a Boolean value. Because
the value is true, it meets the condition to load the variable sigma with the
message “This is true.”

Strict Equality Operators

JavaScript 1.3 introduced strict equality and inequality operators. These operators
test for both equality of value and equality of type. In other words, if both values
were 23 but one variable is a string and the other is a number, you might think
that they would be unequal anyway. Consider the following script:

<html>
<script language="JavaScript">
var currentWord="75";
var currentNumber=75;
var outcome=(currentWord==currentNumber);

document.write(outcome);
</script>
<body bgcolor="lightsalmon">
</body>
</html>

You might be surprised to find that the variable outcome is true ! The reason for
that is that JavaScript tries very hard to resolve numeric and string differences.
Remember, if you define a variable as follows, the outcome is a string even
though the line mixes numeric and string literals:

var mix = "$" + 12.33;

The same is true when JavaScript compares two variables where one is a number
and one is a string. If the “values” are deemed to be the same even though one
is a string and the other is a number, JavaScript helpfully makes them equal, as
was seen in the previous script. However, if you had an application where both
the values and the type of data are important to compare, you could not make
that comparison with standard comparison operators. To fix that problem,
JavaScript 1.3 introduced strict equality (===) and inequality (! ==) operators.
These operators look at not only the values, but also at the type of variable. In
the previous script, change this line:

var outcome= (currentWord==currentNumber);

to

var outcome= (currentWord===currentNumber);

Then save the script and run the program again. In the second version of the
script, the outcome changes to false. While the numbers are the same, the data
types are different. To get a true outcome, change the line to the following:

var outcome= (currentWord! ==currentNumber);

Both Netscape Navigator 4.7 and Internet Explorer 5 and later recognize strict
equality and inequality operators. (Version 4 of Netscape Navigator requires
language=JavaScript1.2 in the <SCRIPT> tag, but in later versions of the
browser, all you need is language=JavaScript.)

Arithmetic Operators

The basic arithmetic operators in JavaScript are fairly self-explanatory, with a few
exceptions. To avoid the few aggravations from these exceptions, each operator
is discussed with a focus on uses.

Add and Concatenate (+)

One arithmetic operator that has two different uses is add (+). First, the add
operator adds values in math operations. Second, it concatenates (joins) strings
or strings and other literals. Mathematical addition is fairly straightforward, but

concatenation is not. When the add operation joins a string and a number, it
concatenates them and converts the number into a string. For example, the
following script joins strings with nonstring literals:

<html>
<head>
<title>Add and Concatenate</title>
<script language="JavaScript">
var Boole= 22 < 90;
var string="250";
var numnum=88;
var BooleNum =Boole + numnum;
var BooleString=Boole + string;
var StringNum=string + numnum;
var part1="Boolean value " + Boole + " plus the number " +
numnum + " = " +
BooleNum;
var part2="<p>Boolean value " + Boole + " plus the string " +
string + " = " +
BooleString;
var part3="<p>String value " + string + " plus the number " +
numnum + " = " +
StringNum;
document.write(part1+part2+part3);
</script>
</head>
<body bgcolor="paleturquoise">
</body>
</html>

The output seen in Figure 4.1 tells the story of what happens when different
types of literals are mixed. Whenever a number or a Boolean value is added to a
string, it is turned into a string and is concatenated with the string. However,
when a Boolean value is added to a number, the value of the Boolean (0 or 1) is
added to the number, and the Boolean value is treated as a number instead of
true or false. However, when a Boolean and string are combined, the Boolean
value is shown as a string true or false.

Figure 4.1. Depending on the use of the add (+)
operator, different results can be expected.

Subtract and Negation (-)

The minus sign (-) has two very different uses. First, in arithmetic operations, the
subtract operator subtracts the second operand from the first. Hence, this line
places the value 7 in the variable alpha:

var alpha = 10-3;

Second, used as a unary operator, the minus sign changes a positive value to a
negative value. Moreover, if a negative value is subtracted from a positive value,
the result is the same as adding two positive values. The following script
illustrates using both the unary negation and subtraction with the minus (-) sign
as an operator. For example, try out the following script and see if you can
determine ahead of time what the outcome will be:

<html>
<head>
<title>Minus sign and negative values</title>
<script language="JavaScript">
var posVal=44;
var negVal= -posVal;
var diffVal = (posVal-negVal);
document.write(diffVal);
</script>
</head>
<body bgcolor="papayawhip">
</body>
</html>

If you guessed that the output on the screen would be 88, you are right. The
positive value in the variable posVal is 44. The variable negVal is created by the
unary negation of posVal. When negVal is subtracted from posVal, the effect is
to add the two values. (Just as in grammar, a double-negative creates a positive.)

Multiply (*)

The multiplication operator is simple—it multiplies two numbers. However, if you
attempt to multiply two strings containing numeric characters, JavaScript
attempts to change the strings into numbers and complete the multiplication. For
example, try the following script:

<html>
<head>
<title>Multiply Numbers in Strings</title>
<script language="JavaScript">
var stringNum="5";
var stringNum2="20";
var mulEm= stringNum * stringNum2;
document.write(mulEm);
</script>
</head>
<body bgcolor="peru">
</body>
</html>

The output to the screen will be 100. So, the multiply operator (*) can actually
convert certain strings into numbers as well as multiply numbers.

Divide (/)

Like the multiply operator, the divide operator (/) works with numbers. In
operation, the left operand is divided by the right operand. Also, like the multiply
operator, the divide operator attempts to convert a string into a number. The
area where division differs most from the other operations is in a divide by zero
error. Two different types of returns result. A divide by zero of a number other
than 0 results in Infinity, while zero divided by zero returns NaN. The following
script demonstrates what returns from both types of divide by zero errors. Also,
the script shows how to use the built-in functions isFinite() and isNaN() to
test for Infinity and NaN values. In the case of Infinity, the isFinite()
function must be negated using the ! operator.

For a designer, the importance of knowing when a divide by zero instance occurs
is so that you can keep it from crashing your program. A home-decorating site,
for example, has a module that calculates the amount of paint required to paint
rooms. A gallon of paint covers 350 square feet. So, somewhere in the calculator,
the designer must have a formula that divides 350 by the square feet of the room
being painted. Suppose that the viewer forgot to enter a value for the square feet
of the room and the script attempted to divide 350 by 0. Rather than sending the
viewer into confusion by telling her that she had to purchase an infinite number
of gallons of paint, you can trap to divide by zero errors and send any message
that you want, as the following script illustrates:

<html>
<head>
<title>Divide by Zero Errors</title>
<script language="JavaScript">
var leftOperand=77;
var rightOperand= 20 > 30;

var divEm= leftOperand / rightOperand;
var nada= 0/0;
document.write(divEm + "<p>" + nada);
if(!isFinite(divEm)) {
alert("Whoa Dude that\'s a big number!")
}
if(isNaN(nada)) {
alert("You are dividing nothing by nothing.")
}
</script>
</head>
<body bgcolor="springgreen">
</body>
</html>

Modulo (%)

The modulo (%) operator returns the remainder in a division operation. The left
operand is divided by the right operand, and only the remainder is returned.
While the modulo operator does not come to mind in most applications, it can
prove to be an extremely useful operator. For example, the following script uses
the operator to convert long decimal places into two-place decimals.

modulo2dec.html
<html>
<head>
<title>Modulo two decimal place converter</title>
<style>
body {
background-color: plum;
font-family: verdana;
font-weight: bold;
}
</style>
<script language="JavaScript">
var dec=.06;
var part=77.4;
part += (dec * part);
var wholeInt=Math.floor(part);
//The Math.floor() function rounds the variable 'part' down to the
nearest whole integer.
//Prior to obtaining the modulo (remainder) 'part' times 100 is
rounded down to the
nearest whole to obtain an integer remainder.
var fraction=Math.round(part *100)%100;
if (fraction<10) {
fraction = "0" + fraction;
}
var fullVal=wholeInt +"." + fraction;
var headTitle="<h2>Modulo Helper</h2>"
var before="Before conversion = " + part + "<p>";
var after="After conversion = " + fullVal;
document.write(headTitle + before + after);
</script>
</head>
<body>
<center>
</body>
</html>

Figure 4.2 shows what the original number looks like before and after the
conversion script helped along using modulo.

Figure 4.2. You can use the modulo operator to help
write a script to round numbers to two decimal places.

Increment (++) and Decrement (- -) Operators

These operators either add 1 or subtract 1 from an operand. In examples where
loops have been used, the counter variable typically increments or decrements
using these two operators. This general form in a loop statement is the most
common usage of the increment or decrement operator:

for (counter=0; counter<20; counter++) {....

The operand connected with these two operators can be preaffected or
postaffected. If the operator is in front of the operand, the value is added or
subtracted before the next operation. If the operator is at the end of the operand,
the addition or subtraction comes after the operation. For example, the following
script can be used to show how each affects the operand:

<html>
<head>
<title>Increment/Decrement operator</title>
<script language="JavaScript">
var combine="";
var bounce=0;
for (var counter=0;counter <=5; counter++) {
 var Hep=bounce++;
 combine += "Hep value =" + Hep + "
";
 }
document.write(combine);
</script>
</head>
<body bgcolor="palevioletred">

<center>
</body>
</html>

When you run the script, the outcome on the screen is as follows:

Hep value =0
Hep value =1
Hep value =2
Hep value =3
Hep value =4
Hep value =5

The first time through the loop, the variable bounce, originally declared with a
value of zero (0), remained zero because the increment in its value is after the
definition of the variable Hep. Now change the position of the increment operator
to the front of the variable, changing the line to this:

var Hep= ++bounce;

Now the output shows this:

Hep value =1
Hep value =2
Hep value =3
Hep value =4
Hep value =5
Hep value =6

As can be seen, the position of the increment operator made a fundamental
change in the output. With the increment operator in front of the operand, the
Hep variable was incremented in the first iteration, but it wasn’t until the second
iteration that the Hep variable changed when the operator was at the end of the
operand. A small change in the code led to a big change in the output. With
increment and decrement operators, you must be especially vigilant not to crash
a program because the position of the operator is positioned incorrectly.

Operators in the Context of Using String Variables
and Literals

As you saw when using the plus (+) operator, numbers can be added or strings
and numbers can be concatenated into a single string. So, the idea of a “string
operator” is very much a context-dependent concept.

Besides using the plus (+) operator, you can use the comparison operators (>, >=,
<, <=, ==, !=) with strings. In using comparison operators, the operator compares
the string operands in an alphabetical order based on Unicode character encoding.
The higher in the alphabet the character is, the greater the character is in
comparison with another character. However, uppercase letters are less than
lowercase letters. Therefore, Xray is less than emergency, as far as JavaScript is
concerned. The following script shows some relationships between order and
uppercase and lowercase strings.

stringOps.html
<html>
<head>
<title>String comparisons</title>
<script language="JavaScript">
var alpha="apples";
var beta="oranges";
var gamma="Apples";
var delta="Oranges";
var lclc=beta > alpha;
var lcuc=alpha > gamma;
var uclc=gamma > alpha;
var banner="<h3>String comparisons</h3>"
var first=beta + " greater than "+ alpha + " results in " + lclc +
"<p>";
var second=alpha + " greater than "+ gamma + " results in " + lcuc +
"<p>";
var third=delta + " greater than "+ alpha + " results in " + uclc;
document.write(banner+first+second+third);
</script>
</head>
<body bgcolor="mistyrose">
</body>
</html>

Figure 4.3 shows the outcomes that you can expect when working with upperand
lowercase comparisons in JavaScript.

Figure 4.3. Strings beginning with lowercase letters are
considered greater than those beginning with uppercase

letters.

When comparing strings with numbers, a different outcome occurs than when
using the plus (+) operator. Instead of turning numbers into strings, JavaScript
attempts to turn strings into numbers when making comparisons that involve
numeric characters in strings. For example, if you write the following, the variable
alpha would be true:

var alpha="10" > 3;

However, a string with a number followed by character letters does not ignore the
letters and make a valid numeric comparison with a numeric operand.

TIP

Whenever you’re not sure about what is greater than or less than some
combination of numbers, numbers and strings, or strings and strings, use your
browser address window as a test bench. Just enter the word javascript:,
followed by the operands and operators. Figure 4.4 shows a simple example.

Figure 4.4. You can use the URL window of your browser
to test the outcome of different combinations of
numbers or strings using comparison operators.

Boolean Operators

The comparison operators result in Boolean outcomes, but three logical operators
in JavaScript can be considered Boolean as well. The operators combine different
conditions or the negation of a condition.

Logical AND (&&)

A common requirement in a script is for two different conditions to exist for an
outcome to be true or false. JavaScript provides the logical AND (&&) operator
to determine whether two or more conditions are met. For example, an array
search might seek to find all instances of customers who are interested in
purchasing a new printer and who live in the state of Iowa so that they can be
contacted for a printer trade show in Des Moines. Only if both conditions are true
will the outcome be true and added to a contact list. For example, the following
script segment searches for two conditions in an array:

for (var seek=0;customers.length;seek++)
if((interest[seek]=="printer") && (state[seek] =="Iowa")) {....

Note that a double set of parentheses have to enclose the script within the if
statement. You may also use the logical AND in defining variables. For example,
in the following script, the first variable evaluates to true and the second
evaluates to false:

<html>
<head>
<title>String comparisons</title>
<script language="JavaScript">
var alpha = (15 < 20) && ("pen" > "Sword");
var beta = ("big" > "tall") && (20 < 30);
document.write(alpha + "
" + beta)
</script>
</head>
<body bgcolor="lightcoral">
</body>
</html>

Logical OR (||)

The logical OR operator (||) uses the double pipes as a symbol. When two or
more conditions are stated using the logical OR operator, only one of the
conditions need be met for the outcome to evaluate as true. For example, the
variable alpha in the following would evaluate to true, even though two of the
conditions are false:

var alpha = (56 < 34) || (10 > 2) || ("Fred" > "Alice");

You may also use the logical OR (or the logical AND) with variables defined with
Boolean values. For example, the following lines show how you might use the
logical OR in a script:

var alpha = ("beans" > "Potatoes");
var beta = 30 > 40;
var gamma = alpha || beta;

Because the variable alpha contains a true Boolean value and beta contains a
false one, the variable gamma is true because either one or the other has to be
true, not both.

Logical NOT (!)

JavaScript’s logical NOT (!) serves to negate an outcome. Sometimes, as used
elsewhere in this chapter, a built-in function has the opposite of what you might
want to test in your script. The isFinite() function used in an example
elsewhere in this chapter was negated to test for Infinity. The following script
shows some different applications of the logical NOT:

<html>
<head>
<title>Logical NOT</title>
<script language="JavaScript">
var alpha = 200/0;
var beta = !isFinite(alpha);
var gamma = !(!alpha);
var delta = !beta;
var b="
";
combine =
"alpha="+alpha+b+"beta="+beta+b+"gamma="+gamma+b+"delta="+delta;
document.write(combine);
</script>
</head>
<body bgcolor="mintcream">
</body>
</html>

The script generates the following output:

alpha=Infinity
beta=true
gamma=true
delta=false

Because the alpha value generates Infinity, beta should generate true
because the function !isFinite() tests for Infinity. However, the gamma
variable also generates true. The negation of a variable containing a true
Boolean literal generates false, but so will the negation of any other variable
with a non-Boolean value. For example, these lines would return false:

var alpha=5, beta=!alpha;
document.write(beta);

Because alpha does not contain a Boolean value, you might assume that alpha
would be “neutral”—neither true or false. However, in the script where gamma
returns true, a double NOT preceded it— !(!alpha). That is because !alpha
would generate a Boolean false.

Bitwise Operators

If your script calls for bitwise operations, you can use the symbols in Table 4.2 to
guide you. Generally, few programmers require bitwise operators, and they are
only included here for a complete list of operators available in JavaScript and for
programmers who may need them.

NOTE

Bitwise operations involve binary numbers, and you should understand how and
when to effectively use binary numbers in a program. However, you can go
through life as a very effective programmer, not to mention designer, and never
have cause to use bitwise operators. However, if using bitwise operators is crucial

to an envisioned JavaScript program that you have in mind, you will find that
JavaScript provides an ample set of bitwise operators.

Table 4.2. Bitwise Operators
Symbol Operation

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

~ Bitwise NOT

<< Left-shift

>> Right-shift

>>> Zero extension in right-shift

In certain respects, bitwise operators are like any others in the sense that you
use them in the same kinds of expressions as any other operators in JavaScript.
The key difference is that they work with binary (0s and 1s) instead of decimal
values. To see what JavaScript is doing with bitwise operators, consider the first
seven values in a binary number system:

0000 -0
0001 -1
0010 -2
0011 -3
0100 -4
0101 -5
0110 -6

If the digits in one were shifted to the left by one, the value 1 (0001) would
become the value 2 (0010) because the digit in the fourth position from the right
is moved to the third position and a 0 fills in where the 1 originally was. Hence,
0001 becomes 0010, or the decimal value 2. Using bitwise operators in JavaScript,
you can complete the same kinds of operations. The following shows a single shift
to the left, with decimal 3 becoming decimal 6:

<html>
<head>
<title>Bitwise shift</title>
<script language="JavaScript">
var alpha = 3 << 1;
document.write(alpha);
</script>
</head>
<body bgcolor="palevioletred">
</body>
</html>

The output to the screen is 6, but, for JavaScript, it simply shifts 0011 to 0110.
Four bit operations are shown, but JavaScript converts the values to 32-bit

integers internally so that all floating-point numbers are converted to integers
and are rounded down (for example, 3.9999 becomes 3).

Using typeof

The typeof operator is unary, returning one of the following values:

• number
• string
• boolean
• object
• function
• undefined
• null

To use the operator, type the operator (typeof), a space and the operand, or
place the operand in parentheses after the typeof operator. The following script
shows the return of an array (object) and a Boolean value (boolean) using both
methods of applying the operator:

<html>
<head>
<title>typeof Operator</title>
<script language="JavaScript">
var lots=new Array();
var whatTruth = 10 > 4;
var kindOfData1= typeof lots;
var kindOfData2 = typeof(whatTruth);
var kindOfData=kindOfData1 + "<p>" + kindOfData2;
document.write(kindOfData);
</script>
</head>
<body bgcolor="wheat">
</body>
</html>

The new, delete, and void Operators

Of these last three operators discussed, new is the most commonly used. All
objects must begin with a constructor preceded by the new operator. As seen
previously, the array object begins with the new operator:

var family = new Array("Dad","Mom","Sue","Kris");

Likewise, other constructors for objects all use new.

The delete operator removes an object property or array element in a script. For
example, the following would undefine the array element with the string value
Sue:

var family = new Array("Dad","Mom","Sue","Kris");
delete family[2];

However, despite the operator’s name, the element is not deleted; only the value
is. The following script demonstrates what happens:

<html>
<head>
<title>Delete Element Value</title>
<script language="JavaScript">
var family = new Array("Dad","Mom","Sue","Kris");
delete family[2];
document.write(family[3] + "<p>"+family.length);
</script>
</head>
<body bgcolor="peru">
</body>
</html>

The length of the array is still four, and the last element is still Kris. However,
the third array element (element[2]), while no longer Sue, still exists. The
delete operator simply undefined it.

The final operator, void, is unary and operates on any literal or variable. Usually,
you will see this operator as part of an <A> tag in an HTML script, such as here:

The void operator suppresses the display of values from evaluated expressions.
All the viewer sees is javascript:void(0) in the window in the lower-left corner
when the mouse moves over the link instead of the full expression, including the
URL.

Precedence

The order in which expressions are evaluated based on their operators is known
as precedence. Multiplication and division occur before addition and subtraction,
so any operands that are to be multiplied or divided occur before ones that are
added and subtracted. Precedence can be reordered by placing expressions within
parentheses. The innermost parentheses are evaluated first and work outward.
So, if you want two numbers added before multiplication, place them in
parentheses. The following two script excerpts show the difference results from
different precedence order:

var alpha = 3 * 4 + 7 //alpha's value is 19 — 12 + 7
var beta = 3 * (4 + 7) // beta's value is 33 — 3 * 11

When all of the operators have the same precedence, the evaluations occur from
left to right. Table 4.3 is a precedence chart, with the lowest ranks being
executed before the higher ones.

Table 4.3. Precedence
Rank Operators

1 . [] ()

2 ++ -- - (negation) ~ ! delete new typeof void

3 * / %

4 + - (subtraction, addition, or concatenation)

5 << >> >>> (bitwise shifts)

6 < > <= >=

7 = = != = = = != =

8 & (bitwise)

Rank Operators
9 ^ (bitwise)

10 | (bitwise)

11 &&

12 ||

13 ?: (ternary)

14 = All compound assignments (such as +=, /=, and &=)

15 ,

Summary

Operators are truly understood and appreciated only with use and practice. Most
debugging of JavaScript is a matter of looking to make sure that all of the
characters that make up the bulk of operator symbols are the correct ones and
that they are placed where they belong. Of course, memorizing which ones do
what is important, but so many of them depend of the context of their use that
only lots of practice and debugging work leads to optimum use.

In this chapter and previous chapters, operators were used in the context of legal
JavaScript statements. The next chapter examines the different statements that
have been used, plus others not yet used in examples. As you will see, doing
them effectively requires using them in concert with the set of operators from this
chapter. All of the actions in the expressions are controlled by the operators and,
in the context of a statement, JavaScript performs different actions.

When a designer understands the JavaScript basics, he is in a position to begin
thinking about how to use variables, operators, and data to communicate with the
viewer. By recording what the user does in variables, the site can respond in
ways limited only by the designer’s imagination. For example, if the user moves
the mouse over one position, that movement can be placed in the variable alpha
simply by changing the value of alpha to record the movement. Likewise, if the
user moves to another position, the movement can be recorded in a different
variable, beta. Later in the book, you will see how all different types of input from
the mouse and keyboard can be used in site design to individualize feedback to
viewers based on their movement on the page.

Chapter 5. JavaScript Structures

CONTENTS>>

• Statements in Sequential Structures
• Conditional Structures
• Loops

• The with Statement
• The label and continue Statements and Nested Loops

As seen in Chapter 4, “Using Operators and 4,” operators are the building blocks
of expressions. In some respects, expressions are the building blocks of
statements; however, expressions themselves can be statements, so it would be
tautological to say that expressions build statements.

A better way to understand statements can be found in the three basic structures
in JavaScript and just about every other programming language. The three
structures are as follows:

• Sequences
• Branches
• Loops (iterative)

All statements in JavaScript fall into one of those structural categories, with the
possible exception of functions. Functions are encapsulated statements or
compound statements, but the statements within a function are one of the three
structures. So, a function, too, is made up of one or more of the basic structures.

Scripts and functions can use single or compound structures. A compound
structure is simply a structure that uses two or more of the three basic structures.
Most scripts do. For example, the following script uses all three structures:

<html>
<head>
<title>Compound Structure</title>
<script language="JavaScript">
var counter = 0; //Sequence
var endIt = 14;
while (counter < endIt) { //Loop begins
 if (counter == 7) { //Conditional begins
 alert("You are half way through");
 } //Conditional ends
 counter++;
} //Loop ends
var message="Counter value is now:" + counter;
document.write(message);
</script>
</head>
<body bgcolor="antiquewhite">
</body>
</html>

Absolutely no conflicts exist between structures, and one structure can be used in
conjunction with or even inside (nested) another. For example, in the previous
script, a conditional structure is nested inside a loop structure.

Getting back to what a statement is, just about any line of code in a JavaScript
program is a statement. The keywords and combination of expressions, or even
expressions themselves, can be statements. Some statements have a
commandlike consequence (operations), while others define and redefine
variables and objects. Still others perform transformations and calculations.

Statements in Sequential Structures

Sequential structures refer to the order in which the code is entered into a
JavaScript program. In one sense, all code is sequential, but I am using the
structure to differentiate it from statements that loop or conditionally execute
lines of code.

Variable Declarations and Assignments

A simple statement that declares a variable using var is all that a variable
declaration does. Typically, a variable is declared and assigned a value at the
same time; however, technically, the two types of statements are different. For
example, a perfectly legitimate variable declaration is this one:

var myFineVariable; //Declaration

Later in the script, the developer may assign a value to the declared variable. For
example, she might write this, without having to use the var keyword:

myFineVariable = alpha + beta; //Assignment

The assignment statement assigns a value, and a declaration statement makes
the variable part of the script. (Even though the declaration statement is optional
in JavaScript, use it always. Among other things, you can avoid confusion that
might arise between global and local variables.) The assignment of the variables
alpha and beta assumes that in the sequence of the script, both alpha and beta
have been declared and assigned values themselves. Hence this sequence must
precede that assignment of those variables to another variable:

var alpha= 5;
var beta= " de Mayo";

Function Definitions

A second type of definition statement in JavaScript is the function definition.
Unlike the optional var keyword, the function keyword is absolutely required in
JavaScript. This form is used to define all functions:

function functionName(optional argument) {
 Statements
}

An argument is optional after the function name, but the parentheses are
required. For example, the following script illustrates a function definition
statement with no arguments:

<html>
<head>
<title>Function No Arguments</title>
<script language="JavaScript">

function hiThere() {
 document.write("Hi there!");
 }
hiThere();
</script>
</head>
<body bgcolor="lavender">
</body>
</html>

In other cases, you probably will want to provide arguments because the
parameters change. For example, the following script has a function that
measures the cubic inches for a dog crate. The arguments are for x, y, and z
dimensions representing width, height, and depth. By adding the optional
arguments in a function, it’s easy to use the same function to find different
dimensions.

<html>
<head>
<title>Function With Arguments</title>
<script language="JavaScript">
function dogCrate(x,y,z) {
 var size = x * y * z;
var message="Your pup will have " + size;
message += " square inches in the crate.";
document.write(message);
 }
dogCrate(15,30,50);
</script>
</head>
<body bgcolor="tan">
</body>
</html>

The sequence of statements within the function follows the same rules as a
sequence outside of a function. Within the curly braces, the multiple statement
creates a compound statement.

Function Calls

In previous chapters, a common function call has been this:

alert("Some message");

Function calls in a script include both built-in and user-built functions. Many of
the built-in functions might look not like functions, but like methods in objects.
However, the Math object is a placeholder for functions and constants. For
examples, the following script uses a function call as part of a variable
assignment:

<html>
<head>
<title>Calling Function</title>
<script language="JavaScript">
var BidA="33";

var BidB="24";
var bestBid=Math.max(BidA,BidB);
var message ="The best bid is $" + bestBid;
document.write(message);
</script>
</head>
<body bgcolor="lightcyan">
</body>
</html>

Because most built-in functions will not return anything that you can use unless
you put the return into a variable, a function call by itself won’t help much. For
example, this line:

Math.max(BidA,BidB);

is equivalent to typing

33;

Nothing happens. Function calls to alert(), prompt(), and confirm(), plus
user functions with an output statement, can create a return that can be
displayed on the screen. Or, as in the previous script, the function call is assigned
to a variable.

Increment/Decrement Statements

In examining operators in the previous chapter, both the increment (++) and
decrement (- -) operators were discussed. Whenever they are used in a lines,
such as this one, they constitute an increment/decrement statement:

addOne++;
- -dropOne;

Usually, you will find these statements as a part of a loop statement.

Conditional Structures

The “thinking” structure in JavaScript is found in the different types of conditional
statements in the language. Used in concert with different types of comparative
operators, conditional statements take the script on different routes, depending
on what conditions have been met.

At the same time that JavaScript has a thinking structure, so should designers.
The ability to fluently write your own scripts rather than cutting and pasting
someone else’s design frees you from that person’s vision of a page or page
component. Let JavaScript figure out what the user is doing, and provide the user
with an interesting response from JavaScript rather than something that you
don’t understand but can only cut and paste.

The if Statement

When testing for a condition to execute one or more statements, the if
statement is the most common to use. It has the following general format:

If (condition) {
 Conditional Statement(s)
}

The conditional statement is executed only if the condition resolves to a Boolean
true. Otherwise, the script continues to the next line after the second curly brace.

Single or multiple conditions can be a part of the triggering condition. The
following script contains a single condition that resolves as false so that the
conditional statement is not executed.

<html>
<head>
<title>False Condition</title>
<script language="JavaScript">
var alpha="High";
var beta="Low";
var message="The condition is not met";
if(alpha > beta) {
 message="The condition is met";
 }
document.write(message);
</script>
</head>
<body bgcolor="mediumspringgreen">
</body>
</html>

The expression found to be false is the condition that the variable alpha is
greater than the variable beta. Because beta’s value is Low and alpha’s value is
High, and because letters higher in the alphabet are resolved to be greater than
letters lower in the alphabet, the false Boolean value prevented the script from
executing the conditional statement. When the condition is changed to this:

if(beta >alpha) {

the condition is found to be true, and the value of the variable message is
changed to “The condition is met,” and that’s what appears on the screen.

Multiple statements (compound statements) may appear within the curly braces
in an if statement, allowing several different events to occur. For example, the
following example has three different statements when a condition is met in the
if statement:

<html>
<head>
<title>Multiple Statements in Conditional</title>

<script language="JavaScript">
var alpha="Zebras";
var beta="Monkeys";
if(alpha > beta) {
//"Zebras" are greater than "Monkeys" because 'Z' is further up the
alphabet than 'M.'
var polite="Please enter your name:"
var yourName=prompt(polite);
alert("Hiya " + yourName);
}
</script>
</head>
<body bgcolor="beige">
</body>
</html>

The else Keyword

The limitation of the if statement by itself is that no alternative branch is made
available for a false condition. So another keyword, else, had to be added as an
alternative form of if. The following format uses two sets of curly braces:

if (condition) {
 Conditional statement(s)
} else {
 Different conditional statement(s)
}

For example, in the following example, a Boolean outcome forces a different
branch (conditional statement) for a true or false value:

<html>
<head>
<title>If Else</title>
<script language="JavaScript">
var stillSmokin="cough";
var quitSmokin="freeAtLast";
if(stillSmokin > quitSmokin) {
 alert("You\'re going to die too soon fool!");
 } else {
 alert("Way to go Jack!");
}
</script>
</head>
<body bgcolor="whitesmoke">
</body>
</html>

In scripts with user input, such as forms or prompt functions, the else option
provides a step for a second type of feedback. When the parser (interpreter) is
going through the code line by line, the else statement is interpreted only if the
first condition is false.

The else if Convention

Sometimes several options must be considered and several alternatives must be
provided. The else if “statement” combines the if keyword and the else
keyword into a conventionally used pair to create a unique statement. Combining
else and if beyond a single if keyword differentiates it from the standard
combination of if and else. Consider the following else if format:

if (condition1) {
 Conditional statement/s 1;
}
else if (condition2) {
 Conditional statement/s 2;
}
else {
 Conditional statement/s 3;
}

Because the else if “statement” is not a unique JavaScript word but rather is a
programming convention, what is really happening is that the first if statement
can be used with the first else statement. The else branch is to another if
statement. Therefore, the last statement in an else if sequence is the lone else
statement.

<html>
<head>
<title>else if Structure</title>
<script language="JavaScript">
var puppy=prompt("What kind of pup would you like?","");
var puppyLC=puppy.toLowerCase();
if(puppyLC=="greater swiss mountain dog") {
 alert("Yes we have Swissies!");
 }
 else if(puppyLC=="great dane") {
 alert("Yes we have those big wonderful Great Danes!");
 }
 else if(puppyLC=="irish wolfhound") {
 alert("Yes we have the Gentle Giants!");
 }
 else {
 alert("Sorry we only have giant dogs.");
 puppy="information where to find that breed";
 }
var message="<p>Come get your " + puppy;
message +=" at<h3>Goliath\'s Breeders</h3>";
document.write(message);
</script>
</head>
<body bgcolor="palegreen">
</body>
</html>

The final else statement is typically used as a residual category, one in which the
if statements exhausted the categories provided in the series of else if
combinations. It works like a “none of the above” selection in a multiple-choice
quiz.

Using switch, case, and break

The series of else if combination statements makes multiple comparisons
against a condition. JavaScript provides an alternative to the repeated checking
conditions using the switch and case statements:

switch(expression) {
case alpha:
 Alpha statements execute
 break; // skip the other cases if case alpha==expression
case beta:
 Beta statements execute
 break; // skip the other cases if case beta==expression
default: //if no matches execute this
 Tell user that nothing matches
}

To see how the switch and case keywords work together in a script, the next
script takes a similar topic as was done with the else if statements. Using
switch and case as statements, the switch statement includes what amounts to
a true condition to be matched with the different cases. In most real-world
applications of switch, the contents of the expression in the switch statement
would be based on data from external input by a user.

If the case matches the expression in the switch statement, the statements in
that case are executed. Then the parser moves down to the next line and into the
next case statement. To prevent that from happening, one of the statements
within each case should be break. Because the break statement is executed only
if the case statement for that segment of the script is true, the only time that
break will affect the parsing of the script is when the condition that is sought in
the switch statement has been found. Thus, when case resolves as true, break
moves the script execution out of the larger switch condition (beyond the closing
curly brace) and on to the next line of JavaScript.

<html>
<head>
<script language ="JavaScript">
var puppy="Irish Wolfhound";
puppy=puppy.toLowerCase();
var found;
switch(puppy) {
case 'great dane':
alert("Big Guy Breeders have Great Danes");
found="Big Guy Breeders phone: 555-9943";
break;
case 'irish wolfhound':
alert("Gentle Giant Breeders have Irish Wolfhounds");
found="Gentle Giant Breeders phone: 555-1912";
break;
case 'greater swiss mountain dog':
alert("The Swissy Center Breeders have Greater Swiss Mountain Dogs");
found="The Swissy Center Breeders phone: 555-5432";
break;
default:

alert("Contact the American Kennel Club for other breeds and
breeders.");
found="American Kennel Club: 555-8989";
}
var message="<p><p>Be sure to contact them as soon as possible";
message +="<h2>" + found + "</h2>"
document.write(message);
</script>
</head>
<body bgcolor="lightgreen">
</body>
</html>

NOTE

Using break is sometimes associated with poor programming practices, and it
generally should be avoided in conditional statements, especially for novices.
However, the break keyword is a perfectly legitimate one and has useful
applications that conform with good programming; using break with switch and
case is a good example of the break keyword’s appropriate use.

Placing the break at the end of every case within a switch statement is optional,
but doing so is good practice to save processing time and protect against errors.
Some uses of case and switch might mitigate against using break (for example,
you might have more than a single matching case and want to launch different
actions from within a switch statement with more than a single case), but, for
the most part, using break with switch and case is a good practice.

Conditional Shortcuts

Ternary conditional operators were discussed in Chapter 4. As a reminder, a
ternary conditional can be substituted for a simple if / else statement. For
example, both of the following scripts do the same thing, except that the ternary
conditional is far more concise.

Ternary Shortcut
2 > 3 ? alert("It is true") : alert("Not true!");

Standard if/else Statement
if(2 > 3) {
 alert("It is true");
 } else {
 alert("Not true!");
}

You can save some coding time with the ternary operator conditional shortcut,
and while it is perhaps not as clear as the standard if / else statement, once
you get used to using the shortcut, you will find it helpful to get through a project
quickly. The following script shows how the ternary shortcut appears in the
context of a script:

<html>

<head>
<title>Conditional Shortcut</title>
<script language="JavaScript">
2 > 3 ? alert("It is true") : alert("Not true!");
</script>
</head>
<body>
</body>
</html>

Loops

Loops in JavaScript are similar to loops in C++ and Java and most other
languages using loop structures. In this section, you will find explanations of the
different types of loops in JavaScript and suggestions where they are typically
used most effectively in a script. In previous chapters, several examples used
loop structures to illustrate how to employ operators and variables. Now in this
section, the loop structures themselves are the focal point of discussion.

The for Loop

One of the most used and familiar loops is the for loop. This loop iterates
through a sequence of statements for a number of times determined by a
condition. The condition can be a constant based on a numeric literal (a number)
or a constant (that is, a math constant), or the loop can be variable depending on
the count in the variable. The general format is shown here:

for(start value; termination condition; increment/decrement) {
 Statements
 }

The start value is the initial value of a counter variable. The first time through the
loop, the counter value will be based on the start value. The termination condition
is a test to determine whether the counter variable has met the condition that
terminates the loop. The increment/decrement determines how much has been
added or subtracted from the counter variable. A typical use for a loop is to
examine characters in a string. The length of the string is used as the termination
condition, and each character is based on its linear position in the string.

<html>
<head>
<title>For Loop</title>
<script language="JavaScript">
var found = "Email address is missing @ symbol.";
var emailAd=prompt("Please enter your email address:","");
for (var counter=0; counter <= emailAd.length; counter++) {
//The charAt(n) function looks at the character 'n' in the string
 var findAt=emailAd.charAt(counter);
 if (findAt=="@") {
 found="Email address has @ symbol";
 }
}
document.write(found);
</script>
</head>

<body bgColor="powderblue">
</body>
</html>

Because the length of the string is a variable, the termination condition uses the
length of the string rather than a literal value. In this particular example, all that
the script is attempting to do is verify whether the user remembered to put in the
“@” when she entered her email address.

The for/in Loop

A second format used with the for keyword in a loop is the for / in statement.
When the for / in statement is used, the counter and termination are
determined by the length of the object. The general format is shown here:

for (counter variable in object) {
 Statement
}

You do not need to know the number of properties in the object using for / in
because the statement begins with 0 as the initial value of a counter variable and
terminates the loop when all of the properties of the objects have been exhausted.
For example, using an array object, the following loop begins with the first
element of the array named airplane and keeps looping until no more elements
are found in the array:

<html>
<head>
<title>For Loop</title>
<script language="JavaScript">
var airFlock="";
var airplane = new Array("Cessna","Piper","Maule","Mooney","Boeing");
for (var counter in airplane) {
 airFlock += airplane[counter] + "
";
}
document.write(airFlock);
</script>
</head>
<body bgColor="powderblue">
</body>
</html>

Because variables are objects in JavaScript, each character of a string variable is
a property of the variable. Rewriting the script used to illustrate how a for loop
works, the following for / in loop requires a simpler statement to arrive at the
same results:

<html>
<head>
<title>Search For/In</title>
<script language="JavaScript">
var complete="You are missing the @ character in your email address.";
var emailAd = prompt("Enter your email address","");
for (var counter in emailAd) {

 if (emailAd[counter]=="@") {
 complete="You included your @ character.";
 }
}
document.write(complete);
</script>
</head>
<body bgColor="aliceblue">
</body>
</html>

Using the for / in loop in simple strings is just as effective as its use in other
objects that contain properties.

The while Loop

The while loop begins with a termination condition and keeps looping until the
termination condition is met. The counter variable initialization and the counter
increment/decrement are handled within the context of the while statement (that
is, within the curly braces), but they are not part of the initial statement itself.
The general format for the while loop is shown here:

initial value declaration
while (termination condition) {
 statements
 increment/decrement statement
}

As long as the termination condition is not met, the statements are executed and
the counter variable increases or decreases in value. The following example
illustrates the counter variable decrementing in steps of 5:

<html>
<head>
<title>While Loop</title>
<script language="JavaScript">
var counter = 50;
var teamGroups="";
while(counter > 0) {
 teamGroups +="Team " + counter + "
";
 counter -= 5;
}
document.write(teamGroups);
</script>
</head>
<body bgColor="teal">
</body>
</html>

The output to the screen is as shown:

Team 50
Team 45
Team 40
Team 35

Team 30
Team 25
Team 20
Team 15
Team 10
Team 5

The fact that no Team 0 exists is important. As soon as the termination condition
returned a Boolean false, the loop was immediately terminated and the script
jumped over the statements within the loop and executed the next line. Had the
termination condition been this, a Team 0 would have been included in the output:

while(counter >= 0) {

The do/while Loop

Unlike the while loop, the do / while loop always executes statements in the
loop in the first iteration of the loop. Instead of the termination condition being at
the top of the loop, it is at the bottom. The general format looks like the following:

do {
 statements
 counter increment/decrement
} while(termination condition)

The keyword while is outside the curly braces beginning after the do keyword.
Because arrays are commonly used with loops, the following shows a do / while
loop extracting the properties of an array:

<html>
<head>
<title>Do/While Loop</title>
<script language="JavaScript">
var bigCities= new Array("Beijing", "Tokyo", "Mexico City", "New
York", "Los
Angeles", "London", "Berlin", "Bloomfield")
var counter=0;
var metropolis="";
bigCities.sort();
do {
 metropolis += bigCities[counter] + "
";
 counter++
} while (counter < bigCities.length)
document.write(metropolis);
</script>
</head>
<body bgColor="cornsilk">
</body>
</html>

The sorting statement, bigCities.sort(), puts the array elements into
alphabetical order before the array is placed in the loop. Then the loop iterates
until the counter variable returns a Boolean false based on the length of the

array. Because the elements have been arranged alphabetically, the output is
arranged alphabetically, as the following shows:

Beijing
Berlin
Bloomfield
London
Los Angeles
Mexico City
New York
Tokyo

The with Statement

Like the ternary conditional operator, the with statement is a shortcut. Instead of
having to list all of the properties of an object by repeating the basic object, you
can state the bulk of the object in a with statement and then the properties
within the context of the with statement. For example, take a typical form object.
First you must state the object as follows:

document.formName...

Then you follow with the element names and values:

…elementName.value

Thus, your statement would be

document.formName,elementName.value

A typical form could include several different elements, such a first name, last
name, address, city, state, ZIP code, Social Security number, and all other kinds
of property details. Using the with statement, you can specify the object name
once and then follow it with all of the properties and their values in this format:

with (object) {
statements with properties only
}

The statements are typically property values. In the following simple example,
the script uses a single with statement and then places the property values of
the object in the statements within the with context:

<html>
<head>
<title>with</title>
<script language="JavaScript">
function showEm(){
 with (document.customer) {
 var alpha=fname.value;

 var beta=lname.value;
 var gamma=address.value;
 var delta=city.value;
 var epsilon=state.value;
}
var fullName=alpha + " " + beta + "\n";
var livesHere=gamma + "\n" + delta + ", " + epsilon;
alert(fullName + livesHere);
}
</script>
</head>
<body bgColor="cornsilk">
<form name="customer">
<input type=text name="fname"> First Name:
<input type=text name="lname"> Last Name:

<input type=text name="address"> Address:

<input type=text name="city"> City:
<input type=text name="state" size=2> State:
<p>
<input type=button value="Click Here" onClick="showEm()">
</body>
</html>

When and where to best use the with statement depends on the application, but,
as can be seen from the example, it helps to clean up and simplify references to
multiple properties in an object. Figure 5.1 shows the output in a browser.

Figure 5.1. When using forms containing multiple
properties, consider using the with statement.

The label and continue Statements and Nested Loops

The label statement does not inherently go with the continue statement but,
like discussing break with switch and case, you might find it useful to see the
statements used in a mutual context. Likewise, nested loops typically are written

without either label or continue statements, but they serve as a useful
structure to help explain how to effectively use continue.

For the most part, I don’t use continue because, like the break statement, it can
signal sloppy programming practices and poor planning. However, when used
appropriately and in the right context, continue can be a valuable programming
option. The statement jumps out of sequence in a loop structure, but, unlike
break, which exits the loop, continue jumps to test the termination condition of
the loop, effectively skipping the current iteration of statements within the loop.

Consider a program in which a baseball team is sequentially given jersey
numbers except for the numbers of specially recognized players whose numbers
have been retired. Within a loop, the continue statement can jump to the
beginning of the loop when any of the retired numbers are found in the loop.
Furthermore, you have more than a single team, and the second team has the
same number of players and uses the same jersey numbers. The first loop (outer)
keeps track of the teams, and the second loop (inner) keeps track of the players
and jerseys that they will be getting. When one loop resides inside another loop,
it’s called a nested loop.

In JavaScript, labels are not statements, but rather identifiers. If you have ever
programmed in Basic, in which line numbers or labels are used to reference a line
of code, you know what labels are. They are places in the script where the
program can branch if a statement tells it to do so. The format for a label is as
follows:

label:
statements

In some respects, labels can be used like comments to help you organize your
scripts, but they also can be used in conjunction with continue to send the
program to execute the labeled portion of the script. Because the continue
statement can be used only in loops, labeling the loops helps to control what the
program will do. In the following script, the two loops are labeled team and
jersey. Within the jersey loop is a conditional statement using continue that
prevents the retired team numbers from being used. Note that the continue
statement commands a jump to the beginning of the jersey loop, not the team
loop. After you run the script, change the label next to continue from jersey to
team.

<html>
<head>
<title>Using Continue and Labels</title>
<script language="JavaScript">
var teamJ="";
var teamMember=0;
team:
 for(var outCount=1;outCount<3;outCount++) {
 jersey:
 for(var inCount=20;inCount<35;inCount++) {
 if(inCount==22 || inCount==29 || inCount==30)
{
 continue jersey;
 }

 if (teamMember==12) {
 teamMember=0;
 }
 teamMember++;
 teamJ += "Team" + outCount + "Member " + teamMember + " Jersey
Number " + inCount +
 "
";
 }
}
document.write(teamJ);
</script>
</head>
<body bgColor="mediumspringgreen">
</body>
</html>

The script output should look like the following:

 Team1 Member 1 Jersey Number 20
 Team1 Member 2 Jersey Number 21
 Team1 Member 3 Jersey Number 23
 Team1 Member 4 Jersey Number 24
 Team1 Member 5 Jersey Number 25
 Team1 Member 6 Jersey Number 26
 Team1 Member 7 Jersey Number 27
 Team1 Member 8 Jersey Number 28
 Team1 Member 9 Jersey Number 31
 Team1 Member 10 Jersey Number 32
 Team1 Member 11 Jersey Number 33
 Team1 Member 12 Jersey Number 34
 Team2 Member 1 Jersey Number 20
 Team2 Member 2 Jersey Number 21

It finishes with Member 12, and then starts over with Member 1.

Notice how all of the retired jersey numbers were omitted in the assignments for
both teams. Now change this line:

 continue jersey;

to

 continue team;

When you run the program a second time, the output shows only the following
four lines:

 Team1 Member 1 Jersey Number 20
 Team1 Member 2 Jersey Number 21
 Team2 Member 3 Jersey Number 20
 Team2 Member 4 Jersey Number 21

The reason that the second script produces only four lines in the browser window
is that, as soon as the first retired number was detected, the program branched

to the outer loop (team), incremented the value of the counter, and ended when
the second reserved number was found because it had reached the termination
condition. So, as you can see, depending on which label the continue statement
branches to, very different outcomes are produced.

Summary

The three basic structures of sequence, branch, and loop are well represented in
the rich assortment of statements in JavaScript. Knowing how and when to use
the different structures and the set of statements that create the structures along
with the operators and expressions makes up the heart of any language and
certainly JavaScript. Throughout the remainder of the book, the set of statements
discussed in this chapter and the operators from the previous chapter are used
repeatedly. All of the objects and functions, other than those that are built into
JavaScript, employ different combinations of statements and operators discussed
up to this point. In the next chapter on functions, the bulk of the discussion is
centered on how to use statements to create different functions using the
operators and expressions discussed up to this point.

Chapter 6. Building and Calling
Functions

CONTENTS>>

• Methods and Functions
• Creating Functions
• Firing Functions with Event Handlers
• The return Statement
• Using Functions as Data
• Properties in Functions
• Methods in Functions

In discussing the different structures, objects, statements, operators, and
expressions in JavaScript, you have seen several examples using functions.
Chapter 3, “Dealing with Data and Variables,” explained global and local variables
and discussed how local variables are defined inside of function definitions.
Chapter 1, “Jump-Starting JavaScript,” showed how JavaScript in the deferred
mode uses functions with event handlers to enable the designer to build a page
that responds to the user’s actions with input devices. This chapter focuses on the
different uses and constructions for functions.

Methods and Functions

In previous and subsequent chapters, you will see references to methods and
discussions about methods that make them sound a good deal like functions. To
help clarify the difference between methods and functions, this section skips
ahead a bit to a discussion of objects in JavaScript. (The next chapter discusses
objects in detail.)

Objects are collections of properties arranged in a hierarchy. The highest level of
objects in the context of JavaScript and an HTML page is the window. Everything
in an HTML page is a property of the window object. When a function is the
property of an object, it is called a method. However, technically speaking,

because everything in an HTML page is a property of the window object, all
functions are methods associated with the window property. When using most
methods, you must specify the object with which they are associated. For
example, the following script uses a method and function found in previous
chapters:

 <html>
 <head>
 <title>String Function/Method</title>
 <script language="JavaScript">
 var fullName = "Willie B. Goode";
 var address="123 Polar Bear Drive";
 address=address.toLowerCase();
 window.document.write(fullName + "
" + address);
 </script>
 </head>
 <body bgcolor="snow">
 </body>
 </html>

The output of the script is this:

 Willie B. Goode
 123 polar bear drive

The string variable address has a property that functions to change all of the
characters in the string to lowercase. The function, toLowerCase(), is called a
method because, in this case, it always is going to refer to the string object of
which it is a property. The other string in the script, fullName, is not affected at
all by the function because the function (method) is not used as a property of the
fullName string variable.

In the same script, the familiar write() function is used to print the two strings
to the screen. However, the full line is window.document.write(). As you can
see, both document and write() are properties of the window object; hence, the
write() function can be seen as a method. The reason that write() and many
other built-in functions (such as alert() and prompt()) are considered functions
instead of methods is that it is unnecessary to write the window object to fire off
a function that is actually a property of the window object. For example, try the
following little script, in which two built-in functions can clearly be seen as
methods of the window object:

<html>
<head>
<title>Built-in Window methods</title>
<script language="JavaScript">
var watchThis=window.prompt("Enter your name","");
window.alert("See I told you " + watchThis + " that functions are
really methods.");
</script>
</head>
<body bgcolor="white">
</body>
</html>

While it should be clear that built-in functions are actually properties of—and,
therefore, methods of—the window object, is the same true about user functions?
Yes, it is. User functions are called methods when attached to an object. A script
is worth a thousand words:

<html>
<head>
<title>User Window methods</title>
<script language="JavaScript">
function reallyMethod() {
 window.document.write("I\'m really a method!");
 }
window.reallyMethod();
</script>
</head>
<body bgcolor="white">
</body>
</html>

As you can see when you run the script, the user function is, in fact, a method in
this case. The distinction between functions and methods, in a very strict sense,
is artificial. However, in a practical sense, distinguishing between the two is
helpful. If a method is a property of the window object and nothing else, it is
called a function. If a function is a property of a lower-level specific object, it’s
called a method. In some contexts, you will find the terms used interchangeably.
However, the important point is that all functions are properties of objects.

Creating Functions

Creating a function involves stating a function name and then adding a series of
statements or other functions between curly braces. The general format is as
follows:

 function functionName(optional arguments) {
 statements or other functions
 }

For example, the following function in the following script can be used to
determine the number of 1 × 8 boards needed for a shed’s walls. The two
arguments in the function, front and side, are used as variables in two prompt
functions.

<html>
<head>
<title>Shed Planner</title>
<script language="JavaScript">
function shedWalls(front,side) {
 var front=prompt("How many feet across the front?","");
 var side=prompt("How many feet along the side?","");
 var numFront=(front * 12 * 2)/8;
 var numSide=(side * 12 * 2)/8;
 var total=numFront+numSide;
 var message="You will need " + total + " one by eight-inch
boards for your
 shed walls."

 document.write(message);
 }
shedWalls(); //The function is called
</script>
</head>
<body bgcolor="palegoldenrod">
</body>
</html>

The shedWalls() function is launched from within the <script> container simply
by placing the function in sequence after the definition.

It would have been simpler to leave out the function format altogether and simply
have written the sequence of statements that were within the function itself. For
functions to play the role that they were designed to play, they should be
launched independently by an action taken by the user. This next section
examines the events and event handlers used by JavaScript.

Firing Functions with Event Handlers

Chapter 10, “Event Handlers,” examines event handlers in detail. Here, however,
you need to know how event handlers launch a JavaScript function. Chapter 10
explores the nuances of event handlers and the several different ones that are
available in HTML and JavaScript.

Event Categories

Events can be divided into three main general categories:

• Keyboard and mouse events
• Load events
• Form-related events

Errors and window resizing can also be handled as events. Trapping errors can be
used both in debugging and to keep a script from crashing. However, in this
chapter, all the focus is on the main categories and how an event from any one
works to fire a JavaScript function.

Mouse and Keyboard Events

Setting up functions to work with user-generated events from the keyboard or
mouse is very different. As seen in previous chapters, capturing a mouse event is
quite simple. Within a “hot” area on the page, such as a link or button object that
detects mouse actions, you can launch a function in a script. For example, the
following script keeps a running record of the mouse moving using the
onMouseMove event handler from HTML. (NN6+ or IE5+ is required for this next
script.)

<html>
<head>
<title>MouseMove</title>
<script language="JavaScript">
var recordIt=0
function moveIt() {

 recordIt += 1;
 document.viewer.spot.value=recordIt;
 }
</script>
</head>
<body bgcolor="pink">
<center>
<p>
<h2>How many mouse moves?</h2>
<form name="viewer">
<input type=text name="spot" size=3>
</form>
Tickle this spot
</body>
</html>

To set up a dummy link, I used javascript:void as the reference point so that
the link wouldn’t try to jump elsewhere. (You can use the pound sign [#] to do
pretty much the same thing.) The onMouseMove event handler from HTML fires
the function named moveIt(). By incrementing a variable in the text box window
each time the function is fired, you can get a better idea of how the event is
recorded. If you change the script by substituting onMouseOver for onMouseMove,
you will see that the text window indicates a new event only when the mouse is
first over the hotspot. However, as long as any mouse movement is recorded with
the onMouseMove event, the function is fired until the pointer is off the hotspot.
Figure 6.1 shows the screen with the recorded movement as the pointer moves
over “Tickle this spot” on the HTML page.

Figure 6.1. Any movement over the hotspot using
onMouseOver fires the function to increment a variable

stored in the text window.

Keyboard events require a whole different tactic of scripting and might even be
considered a form-related event. They are discussed in detail in Chapter 10.

Load Events

When a page first appears on the screen, it “loads”; when it leaves, it “unloads.”
Both of these events can be captured as part of the <body> tag. Either an onLoad
or an onUnload event handler within the <body> tag launches a function. The
following shows how to launch a function as soon as a link to another page is
clicked:

<html>
<head>
<title>unLoad</title>
<style>
h1 { color:red;
 background-color:white
 }
</style>
<script language="JavaScript">
function lastChance() {
 var message="Thanks for visiting and please come again.";
 alert(message);
 }
</script>
</head>
<body bgcolor="dimgray" onUnload="lastChance()">
<p>
<center>
<h1>Red Hot Page</h1>
</center>
</body>
</html>

The user is only indirectly involved with firing the function. Whereas a mouse click
on a hotspot can fire a function repeatedly, a page loads and unloads only once.
Be judicious in your use of onUnload. When people click a link to go somewhere
else, they might not appreciate any delays.

Form-Related Events

The several form-related events are discussed in detail in Chapter 10, and here
an example serves to illustrate how one form-related event works in firing a
function. Unlike some of the other events that require a hotspot, the form-related
events require a form. For example, the onFocus and onUnfocus events refer to
placing the cursor into or removing it from an input text window within a form.
When the writing cursor (I-beam) is placed into a text window, a “focus” event
occurs and an onFocus event handler fires a function. The following script shows
how a function can automatically fill a window:

<html>
<head>
<title>Focus This</title>
<script language="JavaScript">
function fillItIn() {
 //Substitute your own email address on the next line
 document.info.email.value="bill@sandlight.com";
 }
</script>
</head>
<body bgcolor="gainsboro">

<p>
<form name="info">
Please enter your email address:
<input type=text name="email" onFocus="fillItIn()">
</form>
</body>
</html>

As soon as you click the text window with your mouse pointer, the window should
fill with the selected text. If you are using several text windows, pressing the Tab
key on the keyboard will sequentially move text from one text window to the next.
If you have an onFocus event handler for each text input window, you can
provide a function to fill in each one.

The return Statement

The return statement is discussed here instead of in the last chapter because the
statement can be used only as part of a function. The role of the return
statement is to provide the value of the expressions within the function. But
where does the function return the value to? For example, try out the following
script:

<html>
<head>
<title>Return</title>
<script language="JavaScript">
function returnMessage() {
 var part1="Good ";
 var part2="Morning";
 var wholeThing=part1 + part2;
 return wholeThing;
 }
returnMessage();
</script>
</head>
<body bgcolor="mistyrose">
</html>

When you run the previous program, nothing appears on your screen other than
having a nice, misty, rose-colored screen. The string value “Good Morning” was
returned in the function. However, nothing in the function tells the script where to
put the information in the function. Now, rewrite the script as follows:

<html>
<head>
<title>Return</title>
<script language="JavaScript">
function returnMessage() {
 var part1="Good ";
 var part2="Morning";
 var wholeThing=part1 + part2;
 return wholeThing;
 }
var putItOut=returnMessage();
document.write(putItOut);
</script>

</head>
<body bgcolor="mistyrose">
</html>

Now the script should provide you with a “Good Morning” greeting on the screen.
By placing the function into a variable and directing that variable to be placed on
the screen using the document.write() function, you have specified where you
want the returned value to go. No doubt you might be wondering why you should
use the return statement at all, and instead simply place a document.write
(wholeThing) statement in the function to accomplish the same task. For
optimizing the current script, the latter script might indeed be better; however,
by using the return statement, you can treat the function as data in a variable or
object.

In the previous script, try commenting out the return line like this:

//return wholeThing;

Save the script and run it again. On the second attempt, you should see
“undefined” on the screen instead of “Good Morning.” The value in the function is
not returned, and so nothing is the value of the function. When nothing is placed
into a variable, the return is always undefined. So, when you create a function in
JavaScript, you need to remember to provide a return statement in the script if
you plan to use the function as data in another expression.

Using Functions as Data

As illustrated in the previous section, functions can be treated as data. Like any
other data, functions express some type of value, whether it be string, numeric,
or Boolean. This next section considers two more methods of creating functions.
The first method uses the Function() constructor, and the second uses function
literals.

Using the Function() Constructor

The Function() constructor looks like the new object or array constructor. It has
this general format:

var variableName=new Function("exp1", "exp2", "return exp3;");

Here, exp1 is a necessary first expression, exp2 is an optional second expression,
and exp3 is an expression made up of exp1 and exp2. For example, the following
script uses item as exp1 and tax as exp2 to generate a function that computes
the total cost of an item, including tax:

<html>
<head>
<title>Function constructor</title>
<script language="JavaScript">
var total=new Function("item","tax", "return item +=tax");
document.write("Your bill is $" + total(14.43,.06));
</script>

</head>
<body bgcolor="thistle">
</html>

Unlike the function statement, the Function() constructor uses parentheses
rather than curly braces, and all elements of the function are separated by
commas. Also, the function has no name. Instead, the function-as-a-value is
immediately placed into a named variable, and references to the function can be
made through references to the variable name.

Using Function Literals

A newer version of the Function() constructor can be found in function literals.
Function literals look more like function statements, in that they use curly braces.
However, like the Function() constructor, they have no unique name of their
own for purposes of reference. Their general format is as follows:

var variableName=new function(arg1,arg2) {return exp1};

Using the same parameter as in the Function() constructor example, you can
see the similarities and differences in creating and using values derived from
functions.

<html>
<head>
<title>Function Literal</title>
<script language="JavaScript">
var total=function(item,tax) {return item +=tax};
document.write("Your bill is $" + total(14.95,.06));
</script>
</head>
<body bgcolor="wheat">
</html>

Using functions as literal data provides a lot more flexibility in your scripts.
Instead of invoking just a single function with an event handler, you can invoke a
function that contains literals made up of other functions. Keep in mind when you
begin using function literals in other functions that your scripts can exponentially
increase in complexity and difficulty in debugging. However, rather than being a
reason not to use function literals, this suggests keeping your script well
organized so that you can see where everything belongs.

Properties in Functions

JavaScript functions are objects, and, as such, they contain properties. An
important built-in property is length. The length property is a read-only one
that returns the number of arguments that are supposed to be in a function.
When you define a function, you can put in as many or as few, including zero,
arguments in the function as you want. The number of arguments that you
include becomes the value of the function’s length.

However, when you actually invoke a function, the number of arguments that you
include may not match the number that you defined. The mismatch of defined

and invoked arguments need not lead to your program crashing, but if the two
are equal, you can be assured that the script is working as structured. A function
property, arguments, has a length property as well. From arguments.length,
you can find the actual number of arguments used in the function when it is
invoked. By comparing the two values, you can debug your script. The following
script uses a function with an unused but counted argument in the definition and
three unused arguments when invoked. The output tells you whether they match.

<html>
<head>
<title>Function Properties</title>
<script language="JavaScript">
function bogus(xx) {
//The 'xx' is the argument
 var alpha=arguments.length;
 var beta=bogus.length;
 return alpha + " arguments, but should use " + beta + "
argument/s."
 //When the bogus.length run it returns 1 because it only has 1
argument.
 }
document.write("This function uses " + bogus(3,4,5));
</script>
</head>
<body bgcolor="moccasin">
</html>

As the name of the function implies, none of the arguments is used in the
function. They are there only to illustrate how to access the properties and the
fact that the arguments do exist as properties, whether they are used or not.
Change the number of arguments in the bogus() function definition and in the
statement that invokes the function to see the different feedback that you get on
the screen. (Other browser-specific properties are available but, to minimize
confusion, they are not discussed here.)

Methods in Functions

Only a single standard method object is available at this time for functions.
Several other browser-specific methods are available but, as noted previously,
this book focuses primarily on those that can be used with any browser. The
method converts the output of a function to a string using the toString()
method. It can be added to any function object. This format changes all numeric
or Boolean values to strings:

functionName.toString()

The following script provides an illustrative example of how the method works:

<html>
<head>
<title>Illustrating toString()</title>
<script language="JavaScript">
function alpha() {
 var hope = 12;

 var charity = 10;
 return hope > charity;
 }
function beta() {
 var now = 57;
 var then = 3;
 return now / then;
 }
var header="<h2>Functions in Strings and Numbers </h2>"
var indigo = alpha();
var denim=beta();
var boole = alpha().toString();
var lean = beta().toString();
var twoStrings= boole + lean;
var stringer ="The functions converted to strings return-> ";
var sumnum ="The regular functions return the sum, ";
var numnum=indigo + denim;
document.write(header + stringer + twoStrings + "<p>" + sumnum +
numnum);
</script>
</head>
<body bgcolor="lightyellow">
</body>
</html>

The purpose of including a Boolean value in the function alpha is to show that,
expressed as a string, the value returns a true and, as a number, it returns the
value 1. When the two functions are converted to strings using the toString()
method, the output is a concatenation of true and 19. However, without the
conversion, the value 20 is returned. Figure 6.2 shows the output on the screen.

Figure 6.2. The toString() method used with functions
converts all numeric values to strings.

Summary

Functions are the bedrock of interactive JavaScript on the World Wide Web.
Because functions, combined with event handlers, allow for a delayed response

based on the user’s action, they respond to an action and hence are interactive.
So, virtually all events triggered by the user’s action are potential sources for
launching functions and engaging the user in ways that a static web page cannot
do alone.

For the most part, functions are built as independent objects and are launched by
a triggering event. However, they can be treated as data and can be placed into
variables for use in other statements, including other functions as arguments or a
part of other objects. As such, functions can be treated as modular building
blocks in an object-oriented format for creating sophisticated but very clear
scripts.

In developing your functions, use clear, concise code that you can reuse in other
scripts. As you get better, your functions can be placed into libraries or an
application program interface (API) and can be brought into your pages by an
externally saved file with key JavaScript functions ready to use. All you have to
do is call them into the new script, and a good hunk of your work will be done.

Chapter 7. Objects and Object
Hierarchies

CONTENTS>>

• Hierarchy of Objects in JavaScript
• User-Defined Objects
• Built-In Objects and Their Properties
• Key Built-In Object Methods

In previous chapters, references have been made to objects, properties, and
methods. I want to use this chapter to go into detail about the key role of objects
in JavaScript and to provide a sense of the hierarchy of objects in HTML and
JavaScript. In addition, this chapter introduces the concepts that you need to
understand for object-oriented programming (OOP) in JavaScript. Thinking in
terms of OOP and writing JavaScript code in OOP is the basis of programming
excellence and program optimization.

Hierarchy of Objects in JavaScript

The key to understanding objects in JavaScript is to understand JavaScript’s
relationship to HTML and HTML’s structure. One of the clearest and simplest
structures in HTML is the form object. Table 7.1 shows the fundamental hierarchy
of objects.

Table 7.1. Hierarchy of HTML Form
Window (object)

Document (property of window)

Form (property of document)

Element (property of form)

Element value (property of element)

In JavaScript, to reference the hierarchy, the dot (.) operator serves as a linking
device for the different levels in the object hierarchy, with the highest level
beginning on the left and working its way to the right. In JavaScript, a generic
reference to the value of a form object would look like the following:

window.document.formName.elementName.value

Generally, the window object is assumed, so the reference begins with the
document object. However, if you are using frames, a frame reference precedes
the document reference. On the other end, value is the reference to any contents
contained within the object to the left of it. Keeping in mind that an object is a
collection of properties, many properties themselves are objects in their own right.
Revisiting the hierarchy in Table 7.1, Table 7.2 shows how the object-property
chain works.

Table 7.2. Object-Property Chain
Object Properties

Window object document, form, element, element value

Document object form, element, element value

Form object element, element value

Element object element value

Element value property of element

To make something actually work within the hierarchy, an example is in order. In
this next example, the objects are already defined by HTML, and all that
JavaScript will do is provide a literal value. However, as you will see in the script,
more than a single object can have their values changed.

<html>
<head>
<title>Hierarchy</title>
<style type="text/css">
h2 {
 font-size: 18pt;
 color: #e8b002;
 font-family: verdana
}
.clickNote {
 font-size: 12pt;
 font-weight:bold;
 color: #fb503e;
 background-color:black;
 font-family: verdana
}
</style>
<script language="JavaScript">
function doIt() {
 window.document.petstore.puppy.value="Swissy";
 window.document.petstore.clicker.value="I\'ve been clicked";
 }
</script>
</head>

<body bgcolor="#839063"
onLoad="javascript:window.document.petstore.reset()">
<h2>Object Hierarchy Practice</h2>
 Click the button:
<form name="petstore">
<input type=text name="puppy">
<input type=button name="clicker" value="Click to change value of
text window."
onClick="doIt()">
</form>
</body>
</html>

Figure 7.1 shows what appears as soon as the page is loaded or reloaded. An
important JavaScript element in the script is the resetting of the text window,
which is handled within the <body> tag.

Figure 7.1. The initial page shows a clear text window
and a button with specific instructions.

The style sheet simply sets up the colors and provides color values for the
background and two of the fonts. The JavaScript function doIt() is made up of
two object definitions that follow the hierarchy to a point where a value can be
entered for a selected property. The text window was assigned no value in the
HTML script, so the only value that it will have is the string literal Swissy that has
been assigned to the object. Second, the button object has a value defined for it
initially in the HTML script. However, to illustrate how JavaScript can change a
property’s existing value, it too is defined with a string literal: I\'ve been
clicked. The hierarchy begins with window, but usually the top level of the
hierarchy is superfluous and window was added only for the sake of showing the
entire hierarchy.

A second bit of JavaScript outside of the <script> container is the line in the
<body> container:

<body bgcolor="#839063" onLoad=
"javascript:window.document.petstore.reset()">

The JavaScript line is within the event handler onLoad using javascript: to
specify the code that follows the JavaScript protocol. After the specifier, the
reset() method is applied to the form object so that whenever the page loads,
the undefined values in the text windows are cleared. Figure 7.2 shows the
screen after the indicated button is pressed.

Figure 7.2. After the button has been pressed, both the
values of the text window and button object are

changed.

User-Defined Objects

Most of the objects discussed so far and those to be discussed in the rest of the
book are defined in an HTML script. However, JavaScript provides a way that you
can define your own objects with different properties. Each property can be
assigned a value, just as with objects in HTML. The object constructor Object()
is used to create user-defined objects using the following format:

var userObj = new Object()

After the object has been initialized, you can either add new objects to the
existing object or add properties and their values. Consider an organization, the
Acme Car Company, with the following five departments and two subdivisions:

Management

Research and Development

Finance

Production

Marketing

Sales

Fulfillment

To create a set of objects in JavaScript that reflects the organization, you will
need to define an object on the highest level (Acme Car Company) and then the
properties for each of the divisions and subdivisions. The initial definitions would
be the following:

//Make the objects and properties
var acme= new Object();
 acme.management = new Object();
 acme.management = "Management coordinates everything.";
 acme.management.rand ="Research and Development works to
develop new and better
products and services.";
 acme.finance="Finance keeps track of the money.";
 acme.production = "Production makes the stuff."
 acme.marketing = new Object();
 acme.marketing = "Marketing develops strategies to target
markets for the
products."
 acme.marketing.sales = "Sales contacts potential clients and
sells the product."
 acme.fulfillment = "Fulfillment delivers sold products."

Because Management and Marketing both have subdivisions, they must be
defined as objects as well as being properties of the acme object. Therefore, both
Management and Marketing have their own new Object() constructor function
that gives each the capacity to have their own properties. However, when
acme.management and acme.marketing are defined as two new objects with the
application of the new Object() constructor, they become independent objects
even though they inherit the properties of the acme object.

To see how to use the objects’ properties, the following script displays different
elements within the acme object. First, using a for / in loop, the script pulls out
all of the properties of the acme object simply to provide evidence that it is an
object. Then, to show how to access the values of the object, a display variable
adds on the current contents of the two subobjects of the acme object:
management and marketing.

<html>
<head>
<title>Building Objects</title>
<style type="text/css">
h2 {
font-size:16pt;
color: #584095;
font-family: verdana
}
h3 {
font-size:14pt;
color: #6b8cc1;

background-color: black;
font-family: verdana
}
</style>
<script language="JavaScript">
var acme= new Object();
acme.management = "Management coordinates everything."; //Part of the
acme object.
acme.management = new Object(); //Creating new object
acme.management.rand ="Research and Development works to develop new
and better products
and
services.";
acme.finance="Finance keeps track of the money.";
acme.production = "Production makes the stuff.";
acme.marketing = "Marketing develops strategies to target markets for
the products.";
acme.marketing = new Object();
acme.marketing.sales = "Sales contacts potential clients and sells
the product.";
acme.fulfillment = "Fulfillment delivers sold products.";
var display="<h2>First the properties of the acme object</h2>";
for (var counter in acme) {
 display += counter + "
";
 }
display += "<h3> And now the values of the properties of management
and marketing</h3>";
display += acme.management.rand + "
";
display += acme.marketing.sales;
document.write(display);
</script>
</head>
<body bgcolor="#abc241">
</body>
</html>

Figure 7.3 shows what the output for the script is in a browser. Keep in mind that
in the script, the acme object contains the five major divisions in the company:
management, finance, production, marketing, and fulfillment. The for / in loop
extracts only the properties of the acme object (the five divisions), not properties
of the subobjects (the two subdivisions.)

Figure 7.3. The output is arranged as properties of the
acme object and the values of the subobjects.

The two messages that appear at the bottom portion of the output are simply the
values of the properties of the two subobjects (management and marketing). To
access their values, the script simply placed them into a variable in the following
format:

variableName = acme.management.rand;
variableName = acme.management.sales;

Note that no value property is specified, as has been seen in extracting values
from other objects discussed previously in the book. For example, in the previous
section of this chapter, a value was assigned to a text window object using this
line:

window.document.petstore.puppy.value="Swissy";

The text window’s name is puppy, so why not just define the value of puppy
using the equal (=) operator without having to specify the value property? As an
object, text has two properties: onchange and value. Without specifying which
of the two properties you want to reference, JavaScript doesn’t know what to do.
However, in defining the properties in the previous script where user-definitions
created the object, all of the properties of the acme object had their own values.
For example, if you write this:

variableName= acme.finance;
document.write(varibleName);

your output would be

Finance keeps track of the money.

However, if you wrote this:

variableName= acme.marketing;
document.write(varibleName);

the output would be this:

[object Object]

In the first case, the script provides the complete object, acme.finance. In the
second case, only a part of the object, as ultimately defined in the script, was
presented, acme.marketing instead of acme.marketing.sales. To extract the
initial value of the marketing object, you would need to put the value of
acme.marketing into a variable before creating a second object that included
sales, acme.marketing.sales. In the same way that a variable’s value can
change in a script, so can an object’s. The last values assignment has the last
word in determining what is read as a value in an object.

Built-in Objects and Their Properties

Several important built-in objects have properties that you need to understand
for optimal use with JavaScript. This section examines two key objects: the
screen and the window. The window properties examined here are specific to the
window object and do not refer to virtually every other object that is a property of
the window object.

Reading Screen Properties

When a browser opens an HTML page, it does so with the screen properties
determined by the viewer’s equipment. All screen properties are read-only and
are static as far as the designer/developer is concerned. The screen object has
five cross-browser properties:

screen.availHeight
screen.availWidth
screen.colorDepth
screen.height
screen.width

Each one of the screen property values can be assigned to a variable, another
property’s value, or, as in the next example, an array. When you have the screen
data, you are in a position to make changes to your own script for maximizing
what the viewer sees on his uniquely configured screen. When you try out the
following script, do so on different browsers and different screen settings.

<html>
<head>
<title>Screen Properties</title>
<style type="text/css">
h2 {
 color: #ef3813;
 font-family:verdana;
 font-size:16pt;
 }

.outText {
 color: #e4c08e;
 font-family:verdana;
 font-size:12pt;
 background-color:#ef3813
 }
</style>
<script language="JavaScript">
function showScreen() {
 var display="<h2>Your screen has the following
characteristics:</h2><div
 class=outText>
";
 var screenSee=new Array(5);
 screenSee[0] = "Available screen height = " +
screen.availHeight;
 screenSee[1] = "Available screen width = " + screen.availWidth;
 screenSee[2]= "You have " + (screen.colorDepth) + " bit
color.";
 screenSee[3]= "Your screen is " + screen.height + " pixels
high";
 screenSee[4]= "and " + screen.width + " pixels wide.";
 for (var counter=0;counter< screenSee.length;counter++) {
 display += screenSee[counter] + "
";
 }
 display +="
</div>"
 document.write(display);
 }
showScreen();
</script>
</head>
<body bgcolor="#fbf4eb">
</body>
</html>

When you run the program, you will see the setting that you have for your screen
on your computer. I tested the script on an iMac and a Dell PC. The iMac returned
the following output using Netscape Communicator 6.01:

Available screen height = 580
Available screen width = 800
You have 16 bit color.
Your screen is 600 pixels high
and 800 pixels wide.

The same script run on my PC has a different outcome because it has different
screen settings. Figure 7.4 shows the output on the Dell using Internet Explorer.

Figure 7.4. The screen configuration on the PC shows a
higher and wider screen and 32-bit color rather than 16-

bit color.

Because you cannot change the viewer’s screen options, you might need to
change the page that he sees. For example, using either multiple Cascading Style
Sheets or images, your program can determine the color depth of the viewer’s
screen and decide which ones to use depending on the color depth. Designers
who feel confined (or smothered) by the 216 web-safe palette might want to
provide a wider variety of colors for viewers with more than 8-bit color. Of course,
you run the risk that the screen’s capacity to display color will be greater than the
browser’s, but some designers are willing to take this risk when they know that
the screen is capable of greater color diversity.

Working with Window Properties

The properties that make up the window encompass the entire web page, so this
section deals with only window-level properties. The following key properties are
examined:

window.closed
window.defaultStatus
window.location
window.navigator
window.defaultStatus
window.name
window.history

To examine these properties, I used a frameset with three frames. I also
developed a dummy page that slips into and out of one of the frames. To
integrate the three frames, I created an external Cascading Style Sheet. First,
create the style sheet and then create the frameset page.

winProp.css

h3 {
color:#c6d699;
background-color:#8d6ba8;
font-family:verdana;

font-size:16pt
}
.bod {
color:#731224;
font-family:verdana;
font-size:11pt;
font-weight:bold;
}
a:link {
color:#731224;
background-color:#c6d699
}
h2 {
color:#8d6ba8;
background-color:#c6d699;
font-size:14pt;
}

The frameset is arranged as a typical frame-delineated page. The top frame is
named banner, the left column is named menu, and the larger right column is
named main. The set provides three different pages that can be examined
separately for the script and then viewed as a unit for the output.

winSet.htm
l
<html>
<frameset rows="35%,*" frameborder=0 framespacing=0 border=0>
<frame name="banner" src="frameA.html" border=0>
<frameset cols="30%,*" frameborder=0 framespacing=0 border=0>
<frame name="menu" src="frameB.html" border=0>
<frame name="main" src="frameC.html" border=0>
</frameset>
</frameset>
</html>

The top or banner frame goes through the navigator property. Note that in
assigning a property value to the array, the reference is to self.navigator.
Using self is simply a substitute for window and is a reminder of a self-referent.

frameA.html
<html>
<head>
<title>Navigator Properties</title>
<link rel="stylesheet" href="winProp.css">
<script language="JavaScript">
var nav= new Array(5);
nav[0] ="Code name = " + self.navigator.appCodeName + "
";
nav[1] = "Browser name = " + self.navigator.appName + " ";
nav[2] = "using version number:" + self.navigator.appVersion+ "
";
nav[3] = "Your platform is " + self.navigator.platform+ "
";
nav[4] = "and your user agent is " + self.navigator.userAgent;
var display="<h3> Navigator Information</h3><div class=bod>"
for (var counter=0;counter < nav.length;counter++) {
 display += nav[counter];
 }
display +="</div>";
document.write(display);
</script>

</head>
<body bgcolor="#c6d699">
</body>
</html>

Depending on your system and browser, you can expect a different output from
this frame. Try it out on different browsers on your system or, if you have more
than one system, try it out on the different systems. The information available
about your system and browser using JavaScript can be summarized by the
output in the top frame. Other browser-specific properties of the Navigator object
are available but are not listed here due to incompatibility problems.

In the second page, the window properties of window.closed, window.name, and
window.defaultStatus are used. Note that the page itself can be swapped back
and forth with the dummy page, but the window.closed status remains the same,
as is evidenced by the message on the frame. Also look at Figure 7.5 to see
where in the lower portion of the browser the message has changed due to
changes in window.defaultStatus.

Figure 7.5. Information about a web page can be
captured by JavaScript to optimize the page design and

utility.

frameB.html
<html>
<head>
<title>Window Properties</title>
<link rel="stylesheet" href="winProp.css">
<script language="JavaScript">
var display = "<h3>" + self.name + "</h3>";
display +="<div class='bod'>";
var gone=" ";
var alpha=self.closed;
if (alpha==false) {
 var gone=" never ";
}
display += "This window has" + gone + " been closed.
";

//Change the message in the lower left corner
self.defaultStatus="\"This window property can be changed.\"";
display += "The default status reads: " + self.defaultStatus +
"
</div>";
document.write(display);
</script>
</head>
<body bgcolor="#c6d699"">
<p>
Go Dummy
</body>
</html>

The last frame is filled with a single window property, window.location, which
identifies where your current page’s URL is. It is a simple enough property, but
it’s one that could be passed to another variable for future reference.

frameC.html
<html>
<head>
<title>Window Properties</title>
<link rel="stylesheet" href="winProp.css">
<script language="JavaScript">
var display="<h3> Where Am I? </h3><div class='bod'>";
display += window.location;
document.write(display);
</script>
</head>
<body bgcolor="#c6d699"">
</body>
</html>

Rounding out the dummy page’s purpose is nothing more than showing that the
initial page that is swapped into and out of the “menu” frame does not have the
effect of placing the initial page in a “closed” status. To provide a useful job for
the dummy page, the link back to the original page in the menu frame is
executed using a method from window.history to illustrate how it is used (see
Figure 7.5).

dummy.html
<html>
<head>
<link rel="stylesheet" href="winProp.css">
</head>
<body bgcolor="#976d2c">
<h2>Dummy Page</h2>
Back
</body >
</html>

Key Built-in Object Methods

This section examines built-in object methods in some of the key objects in
JavaScript. The three selected objects, window, string, and date, contain some of
the most heavily used methods. As you might recall from the discussion of
functions in Chapter 6, “Building and Calling Functions,” a method is essentially a
function attached to an object or property of an object. In looking at the basic

methods of the following objects, you should be able to cope with the bulk of
methods used regularly in JavaScript.

The Window Methods

At the time of this writing, JavaScript window object has 18 cross-browser
methods. Some of the methods, such as alert() and prompt(), have been used
in illustrations extensively, and I will not spend time going over them again.
Because the window object has so many methods, rather than attempting a large
script using all of them, several smaller scripts will be used to illustrate categories
of window methods.

In the previous section of this chapter, and in previous chapters in this book, the
window object was assumed, so, instead of having to write both the object and
the method, only the methods were stated in the scripts. For example, instead of
writing this:

window.alert("I don\'t need window to alert.")

you can write this:

alert("I don\'t need window to alert.")

Likewise, a window method can be prefaced by self. For the most part, though,
you do not have to use the window object name. This first script shows how to
use two methods in JavaScript, setInterval() and setTimeout(). In showing
how to use the methods, the window object is placed in the script to remind you
that the method belongs to the window object.

Timing Methods

The first window methods to examine are ones involved in timing actions. The
four methods are as follows:

setInterval(script,ms)
setTimeout(script,ms)
clearInterval(Id)
clearTimeout(Id)

The setInterval() method repeats a script action every so many milliseconds,
initiating the script after the specified number of milliseconds. The setTimeout()
method works the same as setInterval(), except that it does not repeat the
script. Both clearInterval() and clearTimeout() cancel the actions initiated by
the setting methods. In the following script, a coffee cup appears on the screen.

When the left hotspot is clicked, 3 seconds (3,000 milliseconds) elapse and the
cup disappears. When the right hotspot is clicked, 5 seconds elapse and then the
coffee cup reappears. (See Figure 7.6)

Figure 7.6. The setInterval() and setTimeout() methods add a
delay before launching a script.

Two functions named interval() and timeout() do all the work. In the
interval() function, a code replaces the coffee cup with a white image that has
the effect of removing the cup from the screen. In defining the function, the
object and method are placed into a global variable named alpha. The alpha
variable is used in the timeout() function to identify the setInterval() method
that the developer wants to turn off.

timing.html
<html>
<head>
<title>Timing Methods</title>
<script language="JavaScript">
var cupUp=new Image();
cupUp.src="cupaJava.jpg";
var cupDown=new Image();
cupDown.src="hideJava.jpg";
var alpha; //This variable needs to be global
function interval() {
alpha=window.setInterval("document.cup.src=cupDown.src",3000);
}
function timeOut() {
window.setTimeout("document.cup.src=cupUp.src",5000);
window.clearInterval(alpha);
}
</script>
</head>
<body>
<table cellpadding="0" cellspacing="0" border="0" width="100%"
height="100%"
align="Center">
 <tr valign="Middle">
 <td align="Center"><img name="cup" src="cupaJava.jpg"
alt="java" width="64"
 height="38"><p>
 Interval

 Time Out
</td>

 </tr>
</table>
</body>
</html>

To get a good idea of what the setInterval() method does, comment out the
line that turns off the interval in the timeout() function:

//window.clearInterval(alpha);

By doing so, the interval that makes the coffee cup disappear keeps repeating
itself. The cup will keep disappearing after you hit the “Time Out” hotspot as the
interval kicks in repeatedly.

Opening, Sizing, and Positioning Windows

This next set of methods includes methods to open and close windows, resize
them, and move them. Each of the following window methods is employed in the
next example scripts:

open()
close()
moveBy()
moveTo()
resizeBy()
resizeTo()

The open() method has access to most parameters, including height, location,
menubar, resizable, scrollbars, status, toolbar, and width. You can use as
many or few of these options as you want. Usually, designers have a certain look
that they want for a window that is opened from an existing one and tend to turn
off everything—a Boolean 0, no, or false (as in scrollbars=false). The close()
method is always self-referent with a page not part of a frameset. To close an
opened window, the window itself must contain the close() method. Within a
frameset, however, you can address the frame and window to be closed from
another page in the frameset. The other methods are either relative (By) or
absolute (To) for movement or resizing. One important difference between
browsers can be found in using the moveBy() method. In Netscape Navigator 4
and later, the window stops at the edges of the screen unless
UniversalBrowserWrite privileges are invoked; however, Internet Explorer
allows a window to be walked right off the screen. (See the note at the end of the
script to see how Netscape allows offscreen windows.)

StandardWin.html
<html>
<head>
<title>Window Control</title>
<script language="JavaScript">
function GetStanWin() {

open("sampWin.html","sampWin1","toolbar=no,width=200,height=150")
 //width=640,height=460 recommended design size
 }
function moveRel() {

 moveBy(20,20)
 }
function moveAbs() {
 moveTo(20,20)
 }
function shrink() {
 resizeBy(15,10)
 }
function shrivel() {
 resizeTo(400,300);
 }
</script>
</head>
<body bgcolor="white">
<center><p>
<h2>Window Control</h2>
<form>
<input type="button" name="openBut" value="Click to Open New Window"
onclick="GetStanWin()"><p>

<input type="button" name="mvbyBut" value="Click to move relative."
onclick="moveRel()"><p>

<input type="button" name="mvtoBut" value="Click to move absolute."
onclick="moveAbs()"><p>

<input type="button" name="shrinkBut" value="Click to change relative
size." onclick="shrink()
"><p>
<input type="button" name="shrivelBut" value="Click to change
absolute size." onclick="shrivel()
"><p>
</center>
</form>
</body>
</html>

NOTE

Netscape handles security by using different requests for privileges. One privilege
is UniversalBrowserWrite, which allows, among other things, moving windows
offscreen.

To invoke the privilege, use the following line:

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserW
rite");

The next little sample window has a single method in it, close(). Note that no
reference is provided the close() method. Any window with a close() method
gets closed, so be careful where you put it.

sampWin.html
<html>
<head>
<title>Sample Window</title>

<script language="JavaScript">
function shutIt() {
 close();
 }
</script>
</head>
<body bgcolor="palegoldenrod">
<h4>This is a sample window.</h4>
Close
</body>
</html>

Scrolling Methods

This section examines the last group of window methods available for design.
Vertical control in an HTML page can be simplified by using anchors that will jump
to different vertical positions in a page. However, some of the most interesting
designs use a web page’s horizontal real estate. Using the different scroll
methods in JavaScript, you can create web pages that make full use of the
horizontal plane in a web page. In designing pages for monitors with smaller
screens, the scroll methods provide a way to have larger pages that are managed
horizontally and vertically by scrolling options. Of the three scroll methods
available, only two are being discussed. The window.scroll() method has been
deprecated and replaced by window.scrollTo() in JavaScript 1.2. The
window.scrollBy() method is a relative version of window.scroll().

However, in experimenting with different browsers on different platforms, I found
that IE5 on the Macintosh worked with the scrolling method the best, moving
either left or right. Both of the major browsers on Windows Me and Windows
2000 had problems scrolling to the right, and the NN 4.7 and NN 6.01 on the
Macintosh had similar problems in a movement to the right. Figure 7.7 shows the
window scrolling back to the original position on the left.

Figure 7.7. A wide table creates a wide window for
scrolling to the left and right.

scroll.html

<html>
<head>
<title>Scroll</title>
<style type="text/css">
.jLeft {
 font-size: 60pt;
 font-family: verdana;
 color:black;
 font-weight: bold;
}
a {
color:#e39102;
}
.jRight {
 font-size:60pt;
 font-family: verdana;
 color: #e2d155;
 font-weight: bold;
}
</style>
<script language="JavaScript">
function goRight() {
 scroll(600,50);
 }
function goLeft() {
 scrollBy(-120,0);
 }
</script>
</head>
<body bgcolor="#e39102">
<table border=0 cellspacing=0 bgcolor="black" width=1200 height=500>
<tr>
<td align=center valign=middle bgcolor="#e2d155"><span
class=jLeft>Java<p> Scroll Right</td>
<td align=center valign=middle bgcolor="#983803"><span
class=jRight>Script<p> Scroll Left</td>
</tr>
</table>
</body>

Summary

This chapter has taken the first major step in introducing the concepts of objects
in JavaScript. As was seen, objects exist in a hierarchy in JavaScript, with the
window object always being at the top of the heap. Everything else is a property
of the window object in one way or another. Objects can be created by the
designer/developer to add a needed element to a script, and these objects may
have their own properties and values. Likewise, many of the built-in objects have
their own properties that provide useful data for fine-tuning and customizing a
script to address different configurations that viewers may have.

As you will see in the next chapter, objects are driven by their methods—
functions associated with a particular object or one of an object’s properties. By
generating scripts that take advantage of the objects’ properties and methods in
JavaScript, you can create object-oriented programs. The advantage of object-
oriented scripts is that they optimize the script’s execution and open up a whole

different and important way of organizing and thinking about the use of
JavaScript.

Part II: Using JavaScript with Web
Pages

Part II Using JavaScript with Web Pages

8 JavaScript Object-Oriented Programming and the Document Object Model

9 Frames and Addressing Frames in Windows

10 Event Handlers

11 Making Forms Perform

12 Dynamic HTML

13 Remember with Cookies

Chapter 8. JavaScript Object-Oriented
Programming and the Document Object
Model

CONTENTS>>

• Object-Oriented Programming in JavaScript
• The Prototype Concept
• The Document Object Model

Up to this point, all discussion about objects has been in terms of building them
or addressing different object properties and methods. In some ways, properties
act like variables in that they can be assigned values, and the values assigned to
them can change. Likewise, you saw that methods are functions associated with
objects and their properties. More importantly, though, many disparate pieces of
code can be brought together in an object that contains all the information that
variables provide and the actions inherent in functions. By conceiving of an object
as a collection of named properties with values that can be any type of data, you
can see them as building block structures in a script. Keeping in mind that
functions can be a type of data, they are called methods when they are the value
of a property. Perhaps it might help to think of objects as coded modules that can
help organize your scripts.

Because JavaScript has objects, you need to think of programming with objects.
Because I assume that most readers of this book come from a designing
background rather than programming background, you will not be disappointed to
find out that object-oriented programming (OOP) in JavaScript is different from
OOP in C++ or Java. Rather than entering the fray about whether JavaScript is
really an OOP language, I am going to treat JavaScript as a type of OOP language.
In the same way that the Democrats and Republicans are two different political
parties but still political parties, JavaScript is a type of object-oriented

programming language, even though it might not be like other OOP languages. In
the next section, all comments are directed at how JavaScript is an OOP language
and what that means to someone writing OOP scripts.

Object-Oriented Programming in JavaScript

One way to think of JavaScript objects is as associative arrays. From our
discussion of arrays and using the for / in statement to pull information from
objects, you might have already suspected as much. To demonstrate this fact,
the following script builds an object, assigns data to it, and then pulls it apart as
an array:

<html>
<head>
<title>Associative Array</title>
<script language="JavaScript">
var tree = new Object();
tree.size="Big and taller than Uncle Jim.";
tree.shade="It keeps us cool in the summer";
tree.fall="We make giant leaf pumpkins."
var display =tree["size"] + "
";
display +=tree["shade"] + "
"
display +=tree["fall"]
document.write(display);
</script>
</head>
<body bgcolor="wheat" >
</body>
</html>

As you can see from the previous script, all of the properties of the tree object
are essentially elements in the tree array. This is an associative array, and you
can think of JavaScript objects as associative objects.

In working with functions, you can create objects made up of the function. These
functions are called “constructor functions.” Then when you create an object
using the new constructor from the constructor function, your new object has the
properties in the function. This following example uses a constructor function to
set up a new object called Bloomfield. All of the Bloomfield properties inherit
the properties of the Mall object.

<html>
<head>
<title>Constructing Method</title>
<script language="JavaScript">
//Constructor Function
function Mall(stName,shop,product) {
 this.stName=stName;
 this.shop=shop;
 this.product=product;
 }
var Bloomfield= new Mall("Bloomy","Nuts and Lightning Bolts","Organic
Electricity")
var display= Bloomfield.stName + "
";
display += Bloomfield.shop + "
";
display += Bloomfield.product;

document.write(display);
</script>
</head>
<body bgcolor="mintcream" >
</body>
</html>

As you will see in the output to the screen, all of the Mall object’s properties
were inherited by the Bloomfield object. (It might help to think of methods as
function properties rather than simply functions attached to an object. Then you
can better understand that a function is indeed a property.)

The Prototype Concept

Much of the difference between JavaScript and languages like Java is that OOP in
Java is based on a different type of class than in JavaScript. In traditional OOP, a
class is a set and any object is an instance of that class or set. However, in
JavaScript, the concept of class revolves around the concept of a prototype.
Unlike the set concept of class that treats an instance of an object to be a
member of the class, the prototype concept treats the named object with all of
the properties that all members of the class have. For example, consider the class
called Mall.

A Mall object has several characteristics expected in all malls. The following lists
what just about any mall has:

• A name (Bloomfield Mall)
• Shops (butcher, baker, and skateboard shop)
• A number of shops (15)
• Customers (number or individual names)
• Employees (number or individual names)
• Roles (clerk, manager, security, shoplifter)

In JavaScript, the concept of a class as applied to Mall suggests that Mall has all
of the properties that malls typically have. Hence, you could have the following
properties in dealing with the class Mall:

Mall.name
Mall.shop
Mall.shopNumber
Mall.customer
Mall.employee
Mall.roles

To see the difference between a variable and an object, the following script
defines a Mall object and a Mall variable. The defined variable has been
commented out using double slashes (//) because the Mall variable will not work
as a defined object.

<html>
<head>
<title>Variable and Object</title>
<script language="JavaScript">
var Mall= new Object();

Mall.shops="Vinny's Gun and Medical Supply Shop";
//var Mall;
//Mall.shops="Louie's Used Golf Club Emporium and Discount Analysis
Clinic";
document.write(Mall.shops);
</script>
</head>
<body bgcolor="mintcream" >
</body>
</html>

If you remove the double slashes and comment out the original Mall object from
the script, you will find that it will not work. The reason is because the variable
defined in the second instance did not create an object. Instead, it created a
variable—and, while even variables have certain properties (such as length), they
cannot be assigned properties.

The String and Date Objects

Two important built-in objects have yet to be discussed, the String and Date
objects. Each of these objects has important properties, methods, and
parameters to understand. The Date object is fairly specialized as far as design is
concerned, but it can be used in many interesting ways other than to display date
and time. More significant for the designer is the String object and how it can be
used to format data display output.

Using the String Object

The String object has a multitude of methods, but, at this point, only key
selected ones are going to be discussed. At the same time, you can begin to look
at a number of ways to format strings as objects and learn how you can use the
built-in properties to control what you see on the screen. For example, the
following script uses a string object employing five methods simultaneously:

<html>
<head>
<title>String Objects and Methods</title>
<script language="JavaScript">
var myWord = new String("It is impolite to wink!");
myWord=myWord.substring(18,22).fontsize(7).italics().fontcolor("red")
.blink();
document.write(myWord);
</script>
</head>
<body bgColor="peachpuff">
</body>
</html>

Notice that after the string object was defined using the String() constructor, it
was possible to write this statement with five methods attached to the string
object itself:

myWord=myWord.substring(18,22).fontsize(7).italics().fontcolor("red")
.blink();

By the end of the script, the string object myWord has properties of a substring,
font size, italics style, a red font color, and a blinking font. (Don’t ever use
blinking fonts in real designs. They cause style cancer—besides, they work only in
Netscape Navigator.) As you can see, using a string as an object, you can control
what strings will look like on your page.

String methods can be divided into three categories, as shown in Table 8.1.

Table 8.1. Types of String Methods
Tag Methods Action Methods RegExp Methods

Anchor() charAt() match()
Big() charCode() replace()

Blink() (only in NN) concat() search()

Bold() indexOf() split()
Fixed() lastIndexOf()
Fontcolor() slice()
Fontsize() substring()
Italics() substr()
Link() toLowerCase()
Small() toUpperCase()
Strike()
Sub()
Sup()

Tag Methods

The tag methods associated with strings are in reference to the associated tags in
HTML. For example, the bold() method is associated with the tag for
creating bold fonts. Likewise, fontcolor() and fontsize() are associated with
the tag. For designers, the message here is, “Be careful.” In some ways,
the string tag methods could be nearing extinction. Because of the power and
flexibility of Cascading Style Sheets (CSS), many of the tags, such as , are
being deprecated. If you get too accustomed to using the tag methods in
JavaScript, you might find yourself riding a dinosaur. Take a look at Chapter 12,
“Dynamic HTML,” and see what you can do with CSS with JavaScript. In the
meantime, you can see how many built-in methods you can add to a string.

Action Methods

I use the term “action methods” to delineate those methods that transform string
composition or find out information about strings that do not use regular
expressions. The action methods are the core ones in dealing with strings. The
most important ones for design are substring and character identification.

• substring(begin,end) Enters the beginning and ending numeric
positions of a part of the string to extract.

• charAt(n) Enters the value of the position of a character in a string.
• charCodeAt(n) Enters the value of the position of the character in a

string to find the Unicode (ASCII) value of the character at position n.

• indexOf(substr) Enters a string fragment of the string to be searched.
This returns the position of the first character of the string. The
lastIndexOf() does the same thing but begins at the end of the string.

• toUpperCase()/toLowerCase() Transforms a string to all uppercase or
all lowercase characters.

The following script provides an example of how all but the index methods can be
used:

<html>
<head>
<title>Action Method</title>
<script language="JavaScript">
var quote= new String("She showed all of the emotions from A to B.");
var dex=quote.toLowerCase().substring(0,2);
var terity = quote.toUpperCase().charAt(22);
dex=dex.concat(terity);
document.write(dex);
</script>
</head>
<body bgColor="lavenderblush">
</body>
</html>

Regular Expression Methods

The last type of string methods to examine are those using regular expressions.
How much you would actually use these methods depends on your page design,
but regular expressions have great utility with strings. You might want to review
the discussion of regular expressions in Chapter 3, “Dealing with Data and
Variables,” or take a look at the discussion of CGI and Perl in Chapter 16, “CGI
and Perl,” where many of the regular expression formats are discussed in greater
detail.

The four regular expression methods for the string object are the following:

• match(regexp) This returns the substring in the regular expression or a
null value.

• replace(regexp,substitute) The regular expression is replaced by the
substitute string.

• search(regexp) This finds the starting position in the string of the
regular expression.

• split(regexp) This method works with both strings and regular
expressions (JavaScript 1.2). The string is split at the regular expression
(possibly in more than one place), the terms in the regular expression are
discarded, and the string is turned into an array with each element
demarcated by the position of the discarded substring.

The following script demonstrates how each works. Note how the
String.search(exp) method is used in a String.slice() method to find the
term in the regular expression. The output from the script can be seen in Figure
8.1.

Figure 8.1. The regular expression methods associated
with the string object provide a powerful addition to the

tools that you can use in JavaScript formatting.

<html>
<head>
<style type="text/css">
body {
font-family: verdana;
background-color:#e6c303;
}
h3 {
color:#6dc303;
background-color:#1a291f;
}
</style>
<title>Regular Expression Methods in Strings</title>
<script language="JavaScript">
//string.match()
var matchThis = "Play it again Sam";
var stringer1=matchThis.match(/sam/i);//string.replace()
var replaceThis = "The script is embedded in Java.";
var stringer2= replaceThis.replace(/Java/g,"HTML");

//string.search()
var searchThis="www.sandlight.com";
var stringer3=searchThis.slice(searchThis.search(/.com/));

//string.split()
var splitThis = "She has two important issues."
var stringer4 = splitThis.split(/two important/i);

var display = "<h3>Regular Expression Methods in String Objects</h3>";
display += matchThis + " becomes : " + stringer1 + "
"
display += replaceThis + " becomes : " + stringer2 + "
"
display += searchThis + " becomes, with the help of string.slice() :
" + stringer3
+ "
"

display += splitThis + " becomes an array : " + stringer4[0]+ " " +
stringer4[1] +
"
"
var showOff=new String(display);
document.write(showOff.fontcolor("#972126"));
</script>
</head>
<body>
</body>
</html>

The different regular expression methods in the string object can save some time
locating positions in strings. Instead of having to set up loops to search for a
substring or position, think about using the regular expression methods.

Using the Date Object

The Date object has 40 methods and 9 arguments to keep you entertained for
some time. However, many of the methods might not be used too often (such as
the ones dealing with universal time), and most of the methods are either getting
or setting the same thing. Nevertheless, you should be acquainted with both
methods and arguments of the Date object. Table 8.2 provides a summary.

Table 8.2. Date Object Characteristics
Arguments

Milliseconds Number of milliseconds from January 1, 1970.
Datestring Specified date and time (time is optional) in string

format.
Year Four-digit year (such as 2002).
Month Months in numbers from 0 to 11, with January being 0.
Day Day of the month expressed from 1 to 31. (Who knows

why days begin with 1 and everything else begins 0?)
Hours Hours expressed from 0 to 23.
Minutes Minutes expressed from 0 to 59.
Seconds Seconds expressed from 0 to 59.
Ms Milliseconds expressed from 0 to 999.

Methods Most of these return values are defined by the date that
is input into a Date object, even if it isn’t the current
date/time.

getDate() Returns the day of the month.
getDay() Returns the day of the week.
getFullYear() Returns the current year of the Date object.
getHours() Returns the hours.
getMilliseconds() Returns the milliseconds from 1/1/1970 to the date

specified in the object.
getMinutes() Returns minutes.
getMonth() Returns the month as an integer.
getSeconds() Returns the seconds.
getTime() Returns the current time in milliseconds.
getTimezoneOffset() Returns the time zone difference between where you live

and UTC or GMT time.
GetUTCDate() Returns the day of the month in UTC.
GetUTCDay() Returns the day of the week in UTC.
getUTCFullYear() Returns the current year in UTC.
getUTCHours() Returns the hours in UTC.
getUTCMilliseconds() Returns milliseconds in current UTC from 1/1/1970.
getUTCMinutes() Returns minutes in UTC.
getUTCMonth() Returns the month as an integer in UTC.
getUTCSeconds() Returns the seconds in UTC.

Methods
getYear() Returns the year field, deprecated (getFullYear()).
setDate() Sets the day of the month.
setFullYear() Sets the year.
setHours() Sets the hours.
setMilliseconds() Sets milliseconds.
setMinutes() Sets minutes.
setMonth() Sets the month as an integer.
setSeconds() Sets the seconds.
setTime() Sets the current time in milliseconds.
setUTCDate() Sets the day of the month in UTC.
setUTCFullYear() Sets the year in UTC.
setUTCHours() Sets the hours in UTC.
setUTCMilliseconds() Sets the milliseconds field in UTC.
setUTCMinutes() Sets minutes in UTC.
setUTCMonth() Sets the month as an integer in UTC.
setUTCSeconds() Sets the seconds in UTC.
setYear() Sets the year, deprecated (setFullYear()).
toGMTString() Converts a date to a string using UTC or GMT.
toLocaleString() Converts date and time.
toUTCString() Converts to a string using UTC.
valueOf() Converts to milliseconds.

The date object is easy enough to use even with a dizzying array of options.
However, for the most part, the date object is used to compare a past or present
date with the current date or simply to display the date on the screen. Interesting
world clocks can be made using the UTC (Coordinated Universal Time) methods
as well as other uses for timing events, and it should not be forgotten when
putting a date in your pages. The following script provides an example of how the
date object might be employed to keep you on track for Valentines Day.

<html>
<head>
<script language="JavaScript">
var NowDate = new Date();
var DateNow= NowDate.getDate();
var MonthNow = NowDate.getMonth();
//To find Valentines Day you need 1 for the month and 14 for the day
//Remember months begin with 0 so February is 1 and days of the month

//begin with 1. Also be sure to get a hardcopy card!
if (DateNow== 14 && MonthNow == 1) {
 alert("Happy Valentines Day!")
 } else {
 alert ("Please wait until February 14 you romantic fool!")
}
</script>
</head>
<body bgcolor="pink">
</body>
</html>

Why Object-Oriented Programming?

This very short introduction to OOP has been an encouragement to begin thinking
about JavaScript elements in terms of objects, their properties, and their methods.
For most work in JavaScript, the scripts are short; while good programming
organization is important for even short scripts, OOP is not essential for short
scripts. However, as you start working with more people on a web project using
JavaScript and the scripts become longer, OOP becomes more important.
Because OOP encourages modular program units, the units can be shared with
others on a programming team and can be reused, which means that you do not
have to reinvent the wheel every time you sit down to work on your script.

As a web page designer, the concept of modular and reusable design elements is
more obvious and intuitive. Object-oriented programming is the same. If you can
write a complex piece of code as a module, the next time that same code is
required, you can either make small changes to the module (such as different
argument values) or use the same module elsewhere in the script. By doing so,
the time spent on the original code design pays off in the long run.

The Document Object Model

In the JavaScript document object model (DOM), the primary document is an
HTML page. As noted, the Window object, which includes frames, is at the top of
the web browser hierarchy. However, the Document object contains the properties
whose information is used by JavaScript. To strip away the mystery of what a
DOM actually is, think of it as the Document object and all of its properties,
including methods. Statements such as document.write() constitute the object
(document) and a property/method (write()) that make up part of the model. To
oversimplify a bit, you can say that the JavaScript DOM is the sum total of the
Document object’s properties and methods, including the arrays automatically
generated on an HTML page, and the manner in which these objects are accessed
by JavaScript.

Document Properties

In looking at the Document properties, you might experience some sense of déjà
vu from the section on the String object earlier in this chapter. You will see
some similarities, but, for the most part, the properties (not including methods)
that make up the DOM are unique to the Document object. Table 8.3 shows the
properties of the Document object.

Table 8.3. Document Properties
Property Name Associated Property

AlinkColor The active color of a link when selected.
Anchors[array] Each anchor on an HTML page is an element of an

array.
Applets[array] Each applet on an HTML page is an array element.
BgColor Document’s background color.
Cookie Text files that can be read and written by JavaScript.
Domain Security property that can be used with two or more

web servers to reduce restrictions on interactions
between web pages.

Embeds[array] (also
works = plugins Plug-
ins [array])

Each embedded object is an array element of the
embed[] array. and .SWF files are examples of
embedded objects. (See Chapter 18, “Flash
ActionScript and JavaScript,” for a discussion of Flash-
embedded .SWF files and JavaScript.)

FgColor The text color.
Forms[array] Each form on an HTML page is an array element, and

each object within a form is an element of the form
element. (See Chapter 11, “Making Forms Perform,” for
a full discussion of forms and JavaScript).

Images[array] Each image placed on an HTML page is an element of
the images[] array. (See later on in this chapter for a
full discussion of the images[] array.)

LastModified The last modification date, in string format.
LinkColor The first color of a link before it has been visited. (This

defaults to blue.)
Links[array] Each link is an element in an array when it appears on

a document.
Location The URL property, now specified as URL. (See the URL

entry, later in this table.)
Referrer Previous page that had a link to the current page.
Title The document title.
URL New version of the location property specifying the URL

of the loaded page.
VlinkColor The color of a visited link.

The following script shows some of the document properties at work. The form
object is an array, and the JavaScript function addresses the sole text object as
an element of the form array.

<html>
<head>
<script language="JavaScript">
function message(hue) {
 document.forms[0].elements[5].value=hue;
 }
</script>
<title>Dynamic Color Change</title>
</head>

<body>
<H2> Big Font </h2>
<form>
<input type=button value="Red" onClick="document.bgColor='red'"
onMouseDown="message('red')">
<input type=button value="Green" onClick="document.bgColor='green'"
onMouseOver="message('green')">
<input type=button value="Blue" onClick="document.bgColor='blue'"
onMouseMove="message('blue')">

<input type=button value="Font Color to Yellow"
onClick="document.fgColor='yellow'">

<input type=button value="Font Color to Firebrick"
onClick="document.fgColor='firebrick'"> <p>
<input type=text>
</form>
</body>
</html>

Other important properties of the Document object are the array, form, and image
objects. Forms are discussed in detail in Chapter 11, and the array object was
examined in Chapter 3. One important document array object that does bear
closer scrutiny here is the image property as an object.

Image Objects

The image object is one of the most interesting in HTML and JavaScript. When
you place images sequentially on an HTML page using the tag, you place
the image into an array. You do not declare an array, but you do create one
simply by placing images on the screen. The array develops as follows:

document.images[0]
document.images[1]
document.images[2]

In the HTML page, the same images would appear as follows:

One of the properties of the image object that can be changed dynamically with
JavaScript is the src value. The following script uses single-pixel GIFs that have
been resized to form vertical bars. To create a single-pixel GIF, just open the
graphic program that you use for creating GIF images (such as Photoshop or
Fireworks), and make the drawing screen 1 pixel by 1 pixel; then use the
magnifying tool to make it big enough to work in. (All of the graphics are on the
book’s web site.) Color in the work area with one each of the following
hexadecimal values:

#3a4c4f #ce6c56 #859eab #ffeb89
#abc5a8 #8c3227 #debe71

Save each single-pixel GIF with the names c1.gif through c7.gif. The following
script shows where each graphic is placed and shows the JavaScript that allows

you to address the images array by an array address from 0 to 6. The script
addresses the image as part of the Document object like this:

document.images[0-6].src=imageName.src

The imageName.src is part of an image object created in JavaScript. In creating
the object, the URL (or just filename) of the source graphic is included as follows:

imageName.src= "graphicName.gif"

Because JavaScript can only dynamically change the src value in
document.images[n].src, the new value must be defined as an src, not the
image name or URL itself.

<html>
<head>
<title>image array</title>
<script language="JavaScript">
function changeIt() {
 var c1=new Image();
 var n=document.forms[0].hue.value;
 n = parseInt(n);
 c1.src="c3.gif"
 document.images[n].src=c1.src;
}
</script>
</head>
<body>
<table border cols=7 width="100%" height="75%" bgcolor="#cccccc" >
<tr>
<td align=center valign=center><img name ="c1" src="c1.gif" border=0
height=300
width=50></td>
<td align=center valign=center><img name ="c2" src="c2.gif" border=0
height=300
width=50></td>
<td align=center valign=center><img name ="c3" src="c3.gif" border=0
height=300
width=50></td>
<td align=center valign=center><img name ="c4" src="c4.gif" border=0
height=300
width=50></td>
<td align=center valign=center><img name ="c5" src="c5.gif" border=0
height=300
width=50></td>
<td align=center valign=center><img name ="c6" src="c6.gif" border=0
height=300
width=50></td>
<td align=center valign=center><img name ="c7" src="c7.gif" border=0
height=300
width=50></td>
</tr>
</table>
<center>
<form>
<input type=text name="hue" size=1><p>

<input type=button value="Click to change color of image:"
onClick="changeIt()";>
</form>
</center>
</body>
</html>

Figure 8.2 shows how the different color bars should appear on the screen and
shows the window to enter the image array element value.

Figure 8.2. The HTML page contains the images array—
JavaScript can address the array and change the src

values.

Although other properties in the Document object can be addressed, such as the
link[] and anchor[] arrays, the most important for the designer is the images[]
property.

Preloading Images

When designing a page where one graphic replaces another, the image swapping
should be immediate, and the viewer should not be required to wait while the
new image loads. Fortunately, in JavaScript, preloading or placing images in the
browser’s cache is simple. First, a new image object is defined, and then the new
object’s source is defined as the following shows:

var niftyImage = new Image();
niftyImage.src = "coolPix.jpg";

That’s all there is to it. The image is now cached in the browser—it’s preloaded.
Keeping in mind that the images object can be treated like an array, you can
place the preloaded object in an HTML-defined image slot. For example, if you
have an HTML line like the following:

you can replace it with the cached image using this line:

document.images[0].src = niftyImage.src;//images[0] is the first
image

or

document.firstUp.src= niftyImage.src;

There is no limit to the number of images that you can cache, but keep in mind
that it will take the page longer to preload more than fewer images. Also, in
caching your images, you can include the height and width as well. To generate a
seamless replacement, the original and replacing objects should be the same. For
instance, the following represent a good match between a JavaScript cached
image and HTML images:

var expArt = new Image(87,55)

The preloaded image has the same dimensions as the one loaded by HTML.

The DOM Connection

In an HTML page, the HTML structure contains elements and attributes.
JavaScript treats the elements, such as images and forms, as objects, and it
treats the elements’ attributes as properties. For example, Table 8.4 shows the
attributes of the tag in HTML:

Table 8.4. HTML Attributes of the IMG Element
src alt longdesc
Align height width
Border hspace vspace
Usemap ismap

In JavaScript, the element is treated as the images[] object, and all of the
attributes of the element are treated as properties of the images[] object.
While JavaScript can read all of the image’s properties, it can change only the src
property.

With all other elements and their attributes in HTML that appear on the page
(document), they are part of the DOM. JavaScript’s relationship to the
document’s objects lies in the reference to HTML elements as objects and the
attributes as properties of the referenced object. So, while the structure of the
page lies in the HTML elements and attributes, the behavior of the page lies with
JavaScript’s capability to dynamically change certain elements’ (objects’)
attributes (properties).

Summary

Objects in JavaScript are core, and understanding the document object model of
JavaScript in relationship to HTML is essential to working effectively with the
many objects that can be found on a web page. The idea behind object-oriented
programming originally was to harness huge multiprogrammer projects because
thousands of lines of code had to be coordinated. With the typical kind of projects
that most designers will confront, the need for object-oriented programming is
not to harness a giant project because most JavaScript is relegated to working
with limited objectives in single pages. However, the extent to which you begin
taking even baby steps in the direction of object-oriented programming, you will
better understand what is occurring on your web page and how to make it do
what you want.

A web page designer should be able to imagine the results of a dynamic web
page and then, using JavaScript, make that web page come alive. By
understanding OOP and even the concept of objects, properties, and methods in
JavaScript, you have taken a major stride in that direction. Do not view objects
and OOP as a burden, but rather as an opportunity to help you better realize
what lies in your imagination. By the same token, do not treat OOP as an
impediment to creativity. On several occasions, you just will not be able to figure
out how to solve a problem using OOP, but the solution can be found using
variables and statements that do not include objects linked to properties and
methods. The OOP police won’t come and get you! Take little steps in OOP, and
eventually you will be able to harness its full potential.

Chapter 9. Frames and Addressing
Frames in Windows

CONTENTS>>

• The Window as a Complex Object
• Scripts That Write Scripts

The Window as a Complex Object

Chapter 7, “Objects and Object Hierarchies,” covered most of the key properties
and methods in the window object. As you saw in the discussion of the HTML
hierarchy, at the very top is the window object. However, collected with the
window object are other objects, including frames, top, parent, and self.

This chapter examines using and controlling frames within the window object.
JavaScript not only can direct commands to other frames within a given window,
but it also can pass data back and forth between frames. You can even
dynamically create a page within a frame using JavaScript.

The Frame Elements and Attributes

The first order of business is to review the HTML elements and related attributes
of a frame. Keeping in mind that, for JavaScript, an element is referenced as an
object and each of the element’s attributes is referenced as a property, the HTML
structure is a blueprint for JavaScript behaviors. Table 9.1 shows the main frame
elements and their attributes.

Table 9.1. Frame Elements and Their Attributes
Frame Frameset Iframe Noframe

srcrows src
name cols name
marginwidth onload marginwidth
marginheight onunload marginheight
scrolling scrolling
noresize align
frameborder height
 width

Of all of the HTML frame elements, the key one is the frame object itself. Like
images and forms, all window objects have a frames[] array. The array is a
property of window and is referenced with the window’s parent property. Thus,
you may reference the third frame in a window as follows:

parent.frames[2]

If a frame is within another frame, that frame’s parent is the frame it is within. If
you want to address the top-level window and a frame within that window, you
need to address the top object in the window object like this:

top.frames[1]

To address a subframe, you can reference the parent frame by its array element
value and the subframe in the same manner. For example, if you have a frame
within the fourth frame of the top level, you could address the target frame as
follows:

frame[3].frame[4]

However, you can reference frames by their names. Note in Table 9.1 that one of
the frame attributes is name. Just as with forms whose properties can be
addressed by names, so can frames. To see how this works and some other
addressing tricks, the following frameset and pages will be used to demonstrate
how you might go about creating scripts that reference different frames using
JavaScript.

Setting Up the Frameset

The frameset is important in naming your frames because those names become a
reference for JavaScript. This line in the script:

<frame name="header" src="head.html" border=0>

creates an object that is referenced in JavaScript as follows:

parent.header

Also note the order of the frames. The first frame is named header, but it also
can be referenced as this:

parent.frames[0]

Likewise, the other two frames (shown in the next frameNameSet.html listing)
can be referenced by their array element number.

frameNameSet.html
<html>
<head>
<Title>Head Set</title>
</head>
<frameset rows="20%,*" frameborder=0 framespacing=0 border=0>
<frame name="header" src="head.html" border=0>
<frameset cols="20%,*" frameborder=0 framespacing=0 border=0>
<frame name="menu" src="menu.html" border=0>
<frame name="data" src="info.html" border=0>
</frameset>
</frameset>
</html>

The Header Frame

The first frame loads a page containing very simple yet important information
about sending data to another frame. Because each frame has its own HTML page,
the effect is passing data from one page to another. This JavaScript line
addresses parent.data; the rest is document information:

parent.data.document.forms[0].elements[0].value="Greetings";

What is unique up to this point is the capability of the script to put data into
another page. Data from one page in a frameset can be passed to or read from
another page within the same set.

head.html
<html>
<head>
<style type="text/css">
body {font-family: verdana}
</style>
<Title>Header</title>
<script language="JavaScript">
function message() {
 parent.data.document.forms[0].elements[0].value="Greetings";
 }
</script>
</head>
<body bgColor=#ee9caa>
<h3> Header</h3>
<form>

<input type=text>
<input type=button value="Redecorate" onclick="message()" >
</form>
</body>
</html>

The Menu Page

The page in the menu frame uses a function to pass data to the other two pages
in the frameset. Not only does it pass a greeting to the data frame, but it also
changes the contents (values) of the button object in the header frame. Basically,
it is no different from the page in the header frame, other than that it sends data
to two different pages at once.

menu.html
<html>
<head>
<style type="text/css">
body {font-family: verdana}
</style>
<Title>Le Menu</title>
<script language="JavaScript">
function changeThem() {
 parent.data.document.forms[0].elements[2].value="Hi from Menu";
 parent.header.document.forms[0].elements[1].value="Hello";
}
</script>
</head>
<body bgColor=#ef001b>
<h3>Menu</h3>
<form>
<input type=button value="Send Two!" onClick="changeThem()">
</form>
</body>
</html>

The Data Frame

The last frame has a couple of interesting actions. First, it gets data from the
header frame by defining a variable as the name of frame[0], which we know to
be header with this statement:

hi=parent.frames[0].name;

Next, it sends a greeting in a string object that addresses the header frame by
name. Figure 9.1 shows how this loud (all-caps) greeting looks. Finally, the script
extracts the name from frames[1] and puts the name in one of its own form
elements.

Figure 9.1. Data from properties in one frame can be
passed to properties in other frames.

info.html
<html>
<head>
<style type="text/css">
body {font-family: verdana}
</style>
<Title>Info page</title>
<script language="JavaScript">
function reply() {
 var hi=new String();
 hi=parent.frames[0].name;
 parent.header.document.forms[0].elements[0].value="Hello, " +
 hi.toUpperCase() + "!";
 var menName=parent.frames[1].name;
 document.forms[0].elements[1].value=menName;
 }
</script>
</head>
<body bgColor=#828793>
<h3>Data</h3>
<form> <h4>
<input type=text>One

<input type=text>Two

<input type=text>Three<p>
<input type=button value="Change Something" onClick="reply()" >
</form>
</body>
</html>

Scripts That Write Scripts

Up to this point, you have seen how to make changes by sending variables to
different frames in a frameset. By passing variables between frames, you can
basically establish communication between more than a single HTML page within
a frameset. That is an important part of JavaScript, but what if you could
dynamically alter an entire page? You could change everything from the text that
appears on the screen to the entire layout of the page. This section shows how to
do that.

Writing Elsewhere

Throughout the book, you have seen examples of using document.write() to
place formatted text on a page. You can use the same method to write tags to
create an entire page by addressing a document other than the one that you are
using to write the JavaScript. Using the window.open() method, you can open a
new window or target an existing one other than the one that you are using to
write your script. The open() method has four arguments:

window.open(url,name,features,replace)

Up to this point, the only argument used is url. The name argument can be used
to specify a name for a new window or a target window within a frameset. By
using this format, you can target a frame to be the recipient of the output
generated by using document.write():

window.open("","frameName")

From the source page within a frameset, you create a function that targets a
page in another frame using this general format:

function dynamic() {
 var varName = window.open("","frameName")
 varName.document.write('<tags and attributes>');
 varName.document.write(external variables);
 …
 varName.document.close();
}

Essentially, what this method accomplishes is to write a tag-based HTML page
using document.write() to write the page. The function is launched from the
page with the JavaScript. It opens another page, loads it with the tag-based
script generated in the document.write() statements, and then closes the page.
(Don’t ever forget to close the page that you have opened!) Your last line in the
function should always be document.close().

A Basic Dynamic Page

To see how to use the dynamic page-creation capabilities of JavaScript, the
following is a simple frameset and two pages that do two things:

• Change the background color of a page
• Print a message on the page

The fact that the changes are being made to a different frame and that the
changes are dynamic makes this interesting, not the fairly pedestrian work of
changing a background color or displaying a message using document.write().

First, the frameset is unremarkable, but do note the names that have been given
to the two frames. These names will be referenced in subsequent pages.

dynamicSet.html
<html>
<head>
<title> Dynamic Page Change </title>
</head>
<frameset cols="*,*" border=0 frameborder=0>
<frame name="message" src="message.html" border=0 frameborder=0>
<frame name="show" src="show.html" border=0 frameborder=0>
</frameset>
</html>

The core to this set of scripts is message.html. This page contains the JavaScript
that will make the dynamic changes in the frame named show as defined in the
frameset page. The main function first opens the window frame named show.
(Actually, it would be more accurate to say that it targets the frame by name.)
Next, it derives data from the current page and places the data into a variable
named message. Then it starts using the document.write method to create a
page beginning with the <body> tag. When it is finished writing the code for the
page, the window is closed and the function terminates.

message.html
<html>
<head>
<title>Dynamic Change</title>
<script language="JavaScript">
function dynamic(){
 var dyn=window.open("","show")
 var message=parent.frames[0].document.forms[0].pass.value;
 dyn.document.write('<body bgcolor=#dddddd>');
 dyn.document.write('<center>');
 dyn.document.write('<p><p>');
 dyn.document.write('<h1>');
 dyn.document.write(message);
 dyn.document.write('</h1>');
 dyn.document.write('</center>');
 dyn.document.write('</body>');
 dyn.document.close();
 }
</script>
</head>
<body >
<p><p>
<h3>Enter your message in the text window:</h3>
<form>
<input name="pass" type="text"><p>
<input type=button value="Change the Page"onclick="dynamic()">
</form>
</body>
</html>

The final page, show.html, is really a dummy page for the purposes of this
exercise. All it does is show that a text message and a distinct background color
(hot pink!) currently appear on the page. Both the message and the background
color get changed.

show.html
<html>

<body bgcolor="hotpink">
<center>
<p><p>
<h1>
Show
</h1>
</body>
</html>

Figure 9.2 shows the original frameset and pages as they appear when first
loaded. Figure 9.3 shows what dynamic changes were made by the JavaScript in
the page in the left frame.

Figure 9.2. The initial frameset shows two columns with
a message indicating the name of the frame and page.

Figure 9.3. The script from the page in the frame on the
left dynamically changes the frame on the right.

More Dynamic Frames

The initial example of using dynamic frames shows only two changes made in the
page, and it has little practical use. This next example is far more elaborate and
provides a practical tool for comparing font color combinations. It uses a
Cascading Style Sheet for the entire frameset, and then it uses document.write
in combination with the tag to change the colors in the fonts themselves.
Another frame provides both the name and hexadecimal values for trying out
different color combinations. An external CSS page provides all of the pages in
the frameset with a consistent color and style.

color.css
body {
background-color: #decea1;
font-family: verdana
}
.header {
font-size:18pt;
font-weight: bold;
color: red
}
.explain {
font-weight: bold;
font-size: 11;
color: #be881d;
}
.label {
font-size: 14pt;
color: #7a8215
}
.bdtext {
font-size: 10;
color: #7a8215
}

The frameset has two columns and two rows in the second column. The first
frame (frame[0]) uses 60% of the page for an entry display where the user can
put in her color selections. The second frame (frame[1]), in the top row of the
second column, shows several available names and their accompanying
hexadecimal values. In the bottom-right corner is the frame named colorfont
(frame[2]) that will be the target frame for the changes being devised in the first
frame.

changeColorSet.html
<html>
<head>
<title> Frameset Create Page </title>
</head>
<frameset cols="60%,40%" border=0 frameborder=0>
<frame src="entry.html" border=0 frameborder=0>
<frameset rows="85%,15%" border=0 frameborder=0>
<frame src="colorname.html" border=0 frameborder=0>
<frame src="bottom.html" name="colorfont" border=0 frameborder=0>
</frameset>
</frameset>
</html>

The entry.html page has all of the code to write to the colorfont frame. Two
different variables, fcolor1 and fcolor2, store the HTML color name or
hexadecimal value for the colors selected. These color values are passed to the
font colors in the lines typified by the following:

doc.document.write('');

The font color is specified by concatenating the variable name with the rest of the
tag. The result on an HTML page for the previous line, with blue as the value of
the variable fcolor1, would be the following tag:

The trick is to get the double quotes around the color value or name. To get the
double quotes around the color, the double quotes were placed within a set of
single quotes.

entry.html
<html>
<head>
<link rel=stylesheet href="color.css">
<title>Dynamic Change</title>
<script language="JavaScript">
function showcolor(){
 var doc=open("","colorfont")
 var
fcolor1=parent.frames[0].document.forms[0].elements[0].value;
 var
fcolor2=parent.frames[0].document.forms[0].elements[1].value;
 doc.document.write('<body bgcolor=#dddddd>');
 doc.document.write('<center>');
 doc.document.write('<h3>');
 doc.document.write('');
 doc.document.write("J");
 doc.document.write('');
 doc.document.write('');
 doc.document.write("ava");
 doc.document.write('');
 doc.document.write('');
 doc.document.write("S");
 doc.document.write('');
 doc.document.write('');
 doc.document.write("cript </h3>");
 doc.document.write(' <p>');
 doc.document.write('</center>');
 doc.document.write('</body>');
 doc.document.close();
 }
</script>
</head>
<body >
<center>
<form>
<p class="header">Interactive Font Color Changer</p>
<div class="label">Text Color 1 <input
type="text"size="15"name="name">

Text Color 2 <input type="text"size="15"name="name"></div>
<p>
<input type=button value="Color Fonts"onclick="showcolor()">
</form>
</center>
</body>
</html>

The next section of the script contains the names and the values of a sample set
of HTML colors. The colors or the hexadecimal values can be copied and pasted
from the color name frame to the text window in the browser to save time. The
gray background was used to provide a neutral backdrop for the different color
combinations.

colorname.html
<html>
<head>
<link rel=stylesheet href="color.css">
<title> color names </title>
</head>
<body>
<p class="explain">The following are several HTML colors you might
want to use. Use
either the names or the hexadecimal values. If you use hexadecimal,
be sure to put the
pound sign (#) in front of the value (e.g., #2f4f4f.)</p>
<div class="bdtext">
white rgb=#ffffff

 red rgb=#ff0000

 green rgb=#00ff00

 blue rgb=#0000ff

 magenta rgb=#ff00ff

 cyan rgb=#00ffff

 yellow rgb=#ffff00

 black rgb=#000000

 aquamarine rgb=#70db93

 beige rgb=#f5f5dc

 bisque rgb=#ffe4c4

 blanchedalmond rgb = #ffebcd

 blueviolet rgb=#9f5f9f

 brass rgb=#b5a642

 brightgold rgb=#d9d919

 brown rgb=#a62a2a

 bronze rgb=#8c7853

 cadetblue rgb=#5f9f9f

 coral rgb=#ff7f50

 cornflowerblue rgb=#42426f

 darkgreen rgb=#2f4f2f

 darkorchid rgb=#9932cd

 darkpurple rgb=#871f78

 darkslateblue rgb=#7b68ee

 darkslategrey rgb=#2f4f4f

 darkseagreen rgb=#8fbc8f

 darktan rgb=#97694f

 darkolivegreen rgb=#556b2f

 darkorange rgb=#ff8c00

 blueviolet rgb=#9f5f9f

 darkturquoise rgb=#00ced1

 darkcyan rgb=#008b8b

 deepskyblue =#0bfff

 dimgrey rgb=#545454

 dustyrose rgb=#856363

 feldspar rgb=#d19275

 firebrick rgb=#8e2323

 forestgreen rgb=#228b22

 gold rgb=#cd7f32

 goldenrod rgb=#dbdb70

 grey rgb=#c0c0c0

 greenyellow rgb=#adff2f

 honeydew rgb=#f0fff0

 hotpink rgb=#ff69b4

 ivory rgb=#fffff0

 indianred rgb=#4e2f2f

 khaki rgb=#9f9f5f

 lightskyblue rgb=#87cefa

 lightgrey rgb=#a8a8a8

 lightsteelblue rgb=#8f8fbd

 limegreen rgb=#32cd32

 maroon rgb=#8e236b

 mediumaquamarine rgb=#32cd99

 mediumblue rgb=#3232cd

 mediumforestgreen rgb=#6b8e23

 mediumgoldenrod rgb=#eaeaae

 mediumorchid rgb=#9370db

 mediumseagreen rgb=#426f42

 mediumslateblue rgb=#7f00ff

 mediumspringgreen rgb=#7fff00

 mediumturquoise rgb=#70dbdb

 mediumvioletred rgb=#db7093

 midnightblue rgb=#191970

 navyblue rgb=#23238e

 orange rgb=#ff7f00

 orangered rgb=#ff2400

 orchid rgb=#db70db

 palegreen rgb=#8fbc8f

 pink rgb=#bc8f8f

 plum rgb=#eaadea

 salmon rgb=#6f4242

 scarlet rgb=#8c1717

 seagreen rgb=#2e8b57

 sienna rgb=#8e6b23

 silver rgb=#e6e8fa

 skyblue rgb=#3299cc

 slateblue rgb=#007fff

 springgreen rgb=#00ff7f

 steelblue rgb=#236b8e

 tan rgb=#db9370

 thistle rgb=#d8bfd8

 turquoise rgb=#adeaea

 violet rgb=#4f2f4f

 violetred rgb=#cc3299

 wheat rgb=#d8d8bf

 yellowgreen rgb=#99cc32
</div>
</body>
</html>

Finally, the dummy page simply awaits its fate to be changed. However, while it’s
waiting, it is dressed up in the same CSS as the other pages. Figure 9.4 shows
what the viewer sees when all of these parts come together in the browser.

Figure 9.4. A designer can try out different color
combinations without leaving the page.

bottom.html
<html>
<head>
<link rel=stylesheet href=”color.css”>
</head>
<body>
</body>
</html>

Writing to Different Windows

In addition to writing to frames in a frameset, with JavaScript, you can also write
to a different window. In Chapter 7, you saw how to open a separate window. In
an almost identical manner that you can write to different frames using
JavaScript, you can write to different windows.

The following script opens a window with a unique name, ralph, but without a
URL. In other words, it’s a new window, but not with a page to go with it. One
new trick is introduced, but it’s essentially the same kind of script and logic as
you saw using the frameset. This line establishes the window, its name, and its
dimensions:

var winR=open("","ralph", "scrollbars=0, width=200, height=100,
resizable=no")

The next line creates a shortcut when writing this script:

var s=winR.document;

Instead of having to type

winR.document.write();

you can now just type a much shorter version for each line because the rest of
the object is contained in s:

s.write();

The only downside to this shortcut is that it is not quite as clear as writing out
winR.document.write(). Besides, the best shortcut in JavaScript when you have
a lot of repeated code that you cannot put into a loop is using cut and paste in
your text editor.

winright.html
<html>
<head>
<title>Change Different Window</title>
<script language="JavaScript">
function fixWin(){
 var winR=open("","ralph", "scrollbars=0, width=200, height=100,
resizable=no")
 var s=winR.document;
 var message=document.forms[0].george.value;
 s.write('<body bgcolor="hotpink">');
 s.write('<h4>');
 s.write(message);
 s.write('</h4>');
 s.write('</body>');
 s.close();
 }
</script>
</head>
<body >
<form>
<h3>Open and Write to a new window</h3>
<input type="text" size=30 name="george">
<p>
<input type=button value="Write to new window" onclick="fixWin()">
</form>
</body>
</html>

Figure 9.5 shows that the message in the text window has been transferred to
another window created with the script in the page. The default position of a new
window is the upper-left corner of the window. The little window was dragged to
the middle of the larger window but, with a bit more code, you could place it
where you want on the screen.

Figure 9.5. JavaScript can write to other windows as
well as other frames within a frameset.

Summary

The capability to pass data between different windows and frames means that
data generated in one part of a web site can be used in another part. In
applications in which data entered in one page is required in another page,
JavaScript can be used as the agent of communication. While you will see in Part
III, “JavaScript and Other Applications and Languages,” that JavaScript in
combination with various server-side scripts can do a great deal more in moving
data over the web, JavaScript on its own can do a great deal as well.

One of the most interesting challenges for a web designer lies in dynamically
creating pages, especially ones using data passed from the originating source.
While it might seem a lot easier just to pass data between text or text area
windows, you have no control over formatting the materials being passed. By
dynamically changing pages, you can pass data and design the page while you’re
doing so.

Chapter 10. Event Handlers

CONTENTS>>

• The location, anchor, and history Objects
• Events and Event Handlers in HTML and JavaScript

To have an interactive web page using JavaScript, you need two things: a user
action and a reaction by the browser. The most common reaction in an HTML
page is clicking the mouse, and you have seen several examples of the mouse
firing off a function using the HTML onClick event handler in example scripts in
this book. Some scripts have even included onLoad event handlers that fire a
script automatically when a page is loaded. So by now, you have some idea about
event handlers from your experience with basic functions such as rollovers.

This chapter takes a closer look at the events and event handlers in HTML pages
and JavaScript. Here all of the events and the triggering conditions for an event
to launch a function or JavaScript code are examined in detail. By the end of this

chapter, not only will you have more options for firing functions, but you also will
have a better understanding of how and when to use them. However, before
getting into the events and event handlers, three unexamined window objects—
location, anchor, and history— should be studied because all are often
associated with events involving loading and unloading pages.

NOTE

One of the interesting characteristics of JavaScript and HTML is that, while they
both use the same event-handler names, conventions have developed in HTML so
that the event handles in HTML look different from those in JavaScript. HTML is
not case-sensitive, and certain HTML conventions have led to spellings such as
onLoad and onMouseOver. However, in JavaScript, the event handlers are
lowercased, such as onload and onmouseover. For the most part, the HTML event
handlers in this chapter fire JavaScript functions, so the conventional
upper/lowercase combinations are used. However, when an event handler in
JavaScript is expressed as a property, you will see it done so only in lowercase.

The location, anchor, and history Objects

Using links in HTML is second nature to web developers, and creating links with
JavaScript is both easy and much more powerful than what can be done with the
 tag in HTML. The main linking objects in JavaScript are
location and history. When the location object is assigned a URL, you get the
same results as linking a page. It has the following format:

window.location="http//:www.yourURL.something";

(This states that the window object is optional, and it typically is not used with
location. It is included simply to remind the reader that location is a property
of window.)

The location object has eight properties and two methods, as shown in Table
10.1.

Table 10.1. Properties of the location Object
Properties Methods

hash reload()
host replace()
hostname
href
pathname
port
protocol
search

To get a sense of the properties in the location object, the following scripts
attempt to display all of the properties. The first script uses location.URL to load
a page. The second script opens itself and displays information about its current
status.

locationprop.html
<html>
<head>
<title>Location Properties </title>
<script language="JavaScript">
window.location="http://www.sandlight.com/JS/locaInfo.html"
</script>
</head>
<body>
</body>
</html>

The second script is the page being called up for inspection. It will reveal
information about its location in an alert box.

locaInfo.html
<html>
<head>
<title>Location Properties </title>
<script language="JavaScript">
function revealAll() {
 var cr="\n";
 var display = "Hash: " + location.hash + cr;
 display += "Host: " + location.host + cr;
 display += "Hostname: " + location.hostname + cr;
 display += "HREF: " + location.href + cr;
 display += "Path name: " + location.pathname + cr;
 display += "Port: " + location.port + cr;
 display += "Protocol: " + location.protocol + cr;
 display += "Search: " + location.search + cr;
 alert(display)
 }
</script>
</head>
<body onLoad="revealAll()">
New Window
</body>
</html>

As you can see from Figure 10.1, not all of the properties are displayed in the
alert box.

Figure 10.1. The alert box displays all of the information
about the location object available in the URL.

In looking at Figure 10.1, you can see that the page called was on a host named
www.sandlight.com with the same hostname. The file’s full HREF and pathname
are shown along with the protocol. No port was cited, nor was a hash or search
value returned. You will find such values in a URL like this:

http://www.sandlight.com:67/dogHouse/search.html?query=swissy&
matches=47#gsmd

The port value is 67, the hash value is #gsmd, and the search value is ?query=
swissy&matches=47.

The two location methods, locaton.reload() and location.replace(), have
very different functions. The reload() method acts just like the Reload button on
a browser. However, the replace() method acts more like the location object
itself. When a variable is defined in this format, it sends the page identified in the
URL:

var sendMe=location.replace(URL);

However, the replacing page treats the previous page as though it never existed.
If you press the Back button on the browser, it goes to the next-to-the-last
previous page. The following script uses a menu to demonstrate the different
ways to use the location property in a frameset context. A menu frame launches
different pages delineated by a number and different cell background color to
appear in an adjacent column.

The first script just sets up the frameset and provides target names for the two
frames. The most important one to name is the second frame because no new
pages will be replacing the page in the menu frame.

placeSet.html
<html>
<frameset cols ="10%,*">

<frame name="menu" src="placeMenu.html">
<frame name="travel" src="place.html">
</frameset>
</html>

The heart of the frameset is the menu script. In the script are examples of the
different ways that location can be used to access a page in a frameset.
Because only a single frameset is in the window, the script can use parent and
top interchangeably. All of the JavaScript, except for a single function, is in the
event-handler context. When you use several different single-statement scripts, it
is just as easy to write the JavaScript in the event tag as it is to create a whole
set of new functions.

placeMenu.html
<html>
<style type="text/css">
body {
 font-size:14pt;
 font-family:verdana;
 background-color:#ecdac0
 }
</style>
<head>
<script language="JavaScript">
 function goT() {
 parent.frames[1].location="place2.html";
 }
</script>
</head>
<body>
Menu:<p>
<form>
<input type=button value=" 1 " onClick = "parent.frames[1].location =
'place.html'">

<input type=button value=" 2 " onClick="goT()">

<input type=button value=" 3 " onClick = "parent.travel.location =
'place3.html'">

<input type=button value=" 4 " onClick = "top.frames[1].location =
'place4.html'">

<input type=button value=" 5 " onClick = "top.travel.location
='place5.html'">

<input type=button value=" 6 " onClick =
"parent.frames[1].location.replace
('place6.html')">

<input type=button value=" 7 " onClick ="parent.frames[1].location =
'place7.html'">

</form>
</body>
</html>

This next script needs to be reproduced six times, for a total of seven pages. The
first script is named place.html, the second is place2.html, the third is
place3.html, and so forth until place7.html. Use the following cell-background
colors, and replace the number to sequentially follow the filename numbers.

2 #537479

3 #eaaf54

4 #de5c0d

5 #cdb9a1

6 #704611

7 #782616

You will also want to change the text color value of the page display number in
scripts 6 and 7 to #ecdaco. In that way, you can see the light numbers against
the dark contrast of the cell background color.

NOTE

I used an old web page design trick with the pages in the right frame. Each page
is dominated by a single-cell table. The numeric character in the middle of the
page will maintain its relative position, no matter what size or proportion the
frame is. By using the table and cell alignment attributes in HTML, it’s easy to
create a page that keeps its shape.

place.html
<html>
<head>
<style type="text/css">
.num {
 font-size:36pt;
 font-family:verdana;
 }
</style>
</head>
 <body>
<table width=100% height=100% align=center bgcolor="#f43615">
 <tr valign=center halign=middle>
 <td align=center height=”90%” width=90%><p class=”num”>1 </p>
 </td>
 </tr>
</table>
</body>
</html>

Figure 10.2 shows the frameset with the third page moved to the right frame by
the script in Button 3.

Figure 10.2. All of the buttons fire a JavaScript function
or statement to control the pages in the right frame.

Working with the history Object

The history object is a property of the window object. It has a single cross-
browser property, length, and three cross-browser methods, back(), forward(),
and go(n). The length refers to the number of previous URLs that have been
saved.

The most common use of the history object is to move back and forth in a site
by referencing the previously visited sites. Depending on the order the pages
were visited, you specify back() or forward(). The history.go(n) method uses
positive values to go to a forward reference and negative numbers to go to a
backward reference. Keeping in mind that the history object can reference only
previously visited pages, the following two scripts demonstrate using the history
functions. (Write both scripts first before trying to use them.)

The first script initially has no effective history. It has been nowhere, so it does
not have a track record yet. You can click on the Go Forward button, and nothing
will happen. However, after you go to the target page and return, the Go Forward
button is active because it has a history to a forward page.

DblClick.html
<html>
<head>
<title>Forward </title>
<script language="JavaScript">
function doubleUp() {
 window.location="backPage.html";
 }
 function forwardTo() {
 var alpha=history.forward();
 }
</script>
</head>
<body bgcolor="lightgreen">
<p>
<H3> Remember this page!</h3>

First double-click the top button. That will take you to another
site.

When you return to this page, click the bottom button.<P>
<form>
Double-click this button first:
<input type=button value="Two Clicks Here"
onDblClick="doubleUp()"><P>
When you return, click this button.<input type=button value="Go
Forward"
onClick="forwardTo()">
</form>
</body>
</html>

This second page has a history upon arrival because it is accessed from another
page. It can “back up” to the page that it came from. Therefore, you have no
need to build a history initially, and you can immediately fire the script that will
return to the previous page.

backPage.html
<html>
<head>
<title>Reverse </title>
<script language="JavaScript">
function backUp() {
 var alpha=history.back();
 }
</script>
</head>
<body bgcolor="yellowgreen" onUnLoad="alert('You can return here by
pressing the Go
Forward button on the page.')" >
<p>
<H3> Thanks for the Visit</h3>
Place your mouse over the button and return from whence you came.<P>
<form>
<input type=button value="Mouse over here" onMouseOver="backUp()"><P>
</form>
</body>
</html>

anchor Object

The anchors[] array is somewhat of a disappointment at this time. The two
major browsers are incompatible with anchors. Within the location object is a
hash property that can be used to target an anchor with the following format:

location.hash="anchorName"

Within a page, location.hash can provide to be quite useful; however, all that
the anchors[] array returns in a cross-browser environment is the length
property with this format:

document.anchors.length

However, if you run the anchors[] array through a loop with anchors.length,
you will not get the anchor names returned. The following script should give you
a good idea of what you can do with anchors in a cross-browser environment.
(Several different mouse events were used in preparation for the following
section on event handlers.)

anchorsArray.html
<html>
<head>
<title>Anchors and Hashes </title>
<style>
body {
 background-color:#d9e6cc;
 font-family: verdana;
 }
h2 {
 font-size: 24pt;
 color: #ff0040;
 }
h3 {
 font-size: 16pt;
 color: #008080;
 }
a {color:#e68026; font-size:10; font-weight:bold;}
</style>
<script language="JavaScript">
function countAnchors() {
 alert("This script has " + document.anchors.length + "
anchors.");
 }
function goAnchors(anchName) {
 location.hash=anchName;
 }
</script>
</head>
<body onLoad="countAnchors();">
<p>
<h2>Top Level </h2>
one | <a href="#"
onMouseOut =
"goAnchors('two')"> two | <a href="#" onMouseMove
="goAnchors('three')"> three
|
four
<p>
<p><hr><hr>
<p>
<h3>Level One</h3>
<p><hr><hr>
<p>
<h3> Level Two </h3>
<p><hr><hr>
<p>
<h3> Level Three </h3>
<p><hr><hr>
<p>Top
<h3> Level Four
</h3>
</body>
</html>

Figure 10.3 shows that the anchors[] array does, in fact, have elements, but
getting to the elements in JavaScript has not been consistently resolved.

Figure 10.3. The anchors[] array has limited use, but the
location.hash object/property can target anchors.

Events and Event Handlers in HTML and JavaScript

Throughout the book, and especially in this chapter, you have seen examples of
different event handlers, and by now you should have an idea of what they do. To
complete your understanding of what events are, how they are triggered, and
what you can do with them, this chapter breaks them down into four different
categories:

• Mouse events
• Key events
• Form events
• Page/window/image events

Some events and event handlers are different in the two major browsers. As with
the other topics in this book, the focus will be on those features of JavaScript that
have cross-browser compatibility. Likewise, some of the events deal with certain
elements in HTML, to the extent that much of the discussion of those events is
reserved for the chapters that cover the specific topics where the event handler
has the most relevance. Most notable are the form events that are covered
extensively in the next chapter (Chapter 11, “Making Forms Perform”). Event-like
properties, such as form.checked, not only will be examined in the next chapter
to look at the particular object with which they are most pertinent, but they also
will be treated as properties and not events. In many ways, the event handlers
that can be treated as properties in JavaScript represent the future of client-side
JavaScript, and as the language (not to mention the browser manufacturers)
matures, we hope to see cross-browser implementation of event handlers that
are methods (a type of property), not as external HTML firing devices.

Mouse Events

Seven mouse events can be used to trigger a JavaScript program. They include
the following:

• onClick
• onDblClick (NN6+)
• onMouseDown
• onMouseUp
• onMouseMove (NN6+)
• onMouseOut
• onMouseOver

Most of the mouse events listed are familiar to you by now because so many have
been used in examples. The following script provides an example of each of the
mouse events, with the appropriate responses for feedback:

<html>
<head>
<title>Mouse Events </title>
<style type="text/css">
body{
 font-family:verdana;
 background-color:#ffbf00;
 }
h2 {
 color:#b51300;
 font-size:16pts;
 font-weight:bold;
}
a {color:a573b6;font-weight:bold}
</style>
<script language="JavaScript">
function helpMe() {
 alert('Help has arrived. \n----------------------\n 1. Turn on
your monitor.
 \n 2. Look at the monitor.\n 3. Follow instructions.');
 }
</script>
</head>
<body onDblClick="helpMe()";>
<H2> Follow the instructions:
 (Or double-click to get
help.)</h2>

onMouseOver <p>

onMouseUp <p>

onMouseDown <p>
 onClick <p>

onMouseOut <p>
<form>
<input type=button value ="onMouseMove" onMouseMove="alert('Press
enter or return--
don\'t move the mouse!')"><p>

</form>
</body>
</html>

The script uses the double-click (onDblClick) as part of the <body> tag. You’re
accustomed to seeing the onLoad event handler in the <body> tag, but you can
place any of your mouse or key event handlers there as well. By using the
double-click event handler, there is less chance of the event cropping up in one of
the single-click hot spots on the page.

Figure 10.4 shows all the different mouse hot spots, a button, and what happens
when the user double-clicks the mouse anywhere on the page.

Figure 10.4. The mouse event handlers can be placed in
most HTML tags that recognize an event, including the

<body>, forms, and <a> tags.

Key Events

JavaScript recognizes three key events:

• onKeyDown
• onKeyUp
• onKeyPress

Unfortunately, Netscape Navigator and Internet Explorer have different ideas on
how to implement certain key features (no pun intended) for these events. As a
result, the designer has a limited choice of options for a bulletproof cross-browser
implementation of the key event. The general format of any of the key events
resides in firing them from within different HTML tags:

<tag onKeyEvent="functionToFire()">

You can place the key events in any of the tags that accept mouse events, but
capturing which key has been pressed is inconsistent between the browsers. As a
result, the event handlers have limited utility. The following script shows several
different ways that the key event handlers can be employed. Because one of the
key events is placed in the <body> tag, it pops up whenever any of the other key
events are triggered.

<html>
<head>
<style type="text/css">
body{
 font-family:verdana;
 background-color:#e3f37f;
 }
h2 {
 color:#4d57ab;
 font-size:16pts;
 font-weight:bold;
}
a {color:fe0006;font-weight:bold}
</style>
<script language="JavaScript">
function fillIn() {
 document.forms[0].elements[1].value="JavaScript is here!"
}
</script>
<title>Keys Up and Down </title>
</head>
<body bgColor= "cornflowerblue" onKeyPress="alert('This was set up in
the body
element.');">
<center>
<H2> Click on the link text, button, or text window.

Then press any key.</h2>
<a href="#" onKeyUp="alert('The <a href> did it!');"> Link Text
<p>
<form>
<input type=button value ="Surprise me" onKeyPress="alert('You have
to press the
Surprise Me button first!')"><p>
<input type=text size=20 onKeyDown="fillIn()">
</center>
</form>
</body>
</html>

When you press the Link Text hot spot, the event trigged by the onKeyPress
event handler in the <body> tag appears and seems stuck. However, if you press
the Enter/Return key on your computer, the key-launched function from the Link
Text hot spot appears and keeps coming up every time you press a key. Now you
have to click on the OK button in the alert box.

Form Events

The next chapter will explore form events, along with other form characteristics,
in greater detail. In this section, however, you will see how to use the basic event

handlers associated with forms. JavaScript recognizes five event handlers HTML
associates with forms:

• onBlur
• onChange
• onFocus
• onReset
• onSubmit

The references to “blur,” “change,” and “focus” all pertain to text elements in
HTML only. When using the <input type=text> tags in HTML, the resulting text
windows can be clicked and text can be entered. At the time that text is entered
in a window, the window is considered to be in focus. The focus event means that
a particular text window has been clicked and is ready for text input. The general
format for setting up an onFocus event handler in HTML is the following:

<input type=text onFocus="functionGo()">

As soon as the user clicks in the text box, the function fires. The following little
script shows how to use onFocus:

<html>
<head>
<title>onFocus</title>
<script language="JavaScript">
function autoWrite() {
 document.forms[0].elements[0].value="Greetings earthling!";
 }
</script>
</head>
<h3>Click on the Text Window:</h3>
<body bgColor="rosybrown">
<form>
 <input type=text onFocus="autoWrite();">
</form>
</body>
</html>

The other two event handlers that look for events in text window, onChange and
onBlur, first look for the event of selecting a text window and then selecting
something else. The blur event occurs when a window has been selected and then
deselected, while the change event looks to see whether a window has been
selected or deselected. The following script shows how both are used, in both a
text element and a textarea element:

<html>
<head>
<style type="text/css">
body { background-color:peru; font-family:verdana; color:white}
</style>
<title>onFocus</title>
<script language="JavaScript">
var auto = new Object();
var bigOne= new Object();

function showChange() {
 auto=document.forms[0].ralph;
 auto.value="More change."
 }
function areaWrite() {
bigOne=document.forms[0].alice;
bigOne.value="You have plenty of room to write here."
}
</script>
</head>
<h3>Write something in either text window

and then click the other window.</h3>
<body>
<form>
 <input type=text name="ralph" onChange="showChange();"><p>
 <textarea cols=30 rows=5 name="alice"
onBlur="areaWrite();"></textarea>
</form>
</body>
</html>

No matter what content is placed in either form element, they always end up with
the same message because, as soon as the user moves out of the window, the
functions fire. Figure 10.5 shows what the windows will always appear to be after
a text window is clicked.

Figure 10.5. Both blurring and changing in text and
textarea windows can launch JavaScript functions.

The final two event handlers associated with forms are unique in that they are a
form type as well as an event handler. To establish a Reset and Submit button in
a form container, use this format:

<input type=submit>
<input type=reset>

What’s more, the Reset button will clear all of the text and textarea windows in
the form with nothing more than the tag <input type=reset>. No onReset()
event handler is required, and no JavaScript is needed, either. However, using
the reset() method in JavaScript allows you to reset the forms with the method
attached. Also, the onreset event handler can be used as a property in JavaScript
in a cross-browser environment. This next example shows how the reset()
method can be treated as a property of a form. Because it is a property of a form,
you will see that it clears only the form elements of which the method is
connected. A second dummy form is provided so that you can see that, while one
form is cleared, the other is not. Note also that the reset() method is not part of
a form element (property), but is connected directly to the form object.

<html>
<head>
<style type="text/css">
body { background-color:darkorange; font-family:verdana; color:white}
</style>
<title>Reset Property</title>
<script language="JavaScript">
function autoFire() {
 document.hope.reset();
 }
</script>
</head>
<h4>Type in something in the both text windows and then

pass the mouse over the "JavaScript Method" button.</h4>
<body >
<form name="hope">
 <input type=text name="faith"><p>
 <input type=button name="glory" value="JavaScript Method"
onMouseOver="autoFire();">
</form> <p>
<form name="dummy">
 <input type=text name="dummer">
</form>
</body>
</html>

In addition to the reset() method, JavaScript has a submit() method that
coincides with onSubmit() in HTML. However, to really understand the submit()
method or the onSubmit() event handler, you will need to understand more
about submitting forms. A discussion of the submit() method is left to Chapter
11, where forms are explored in depth.

Page/Window/Image Events

As a category, this last set of events occurs as a side effect to what a user might
have initiated. The following five event handlers make up this category:

• onAbort
• onError
• onLoad
• onResize
• onUnload

These event handlers work with changes that occur when an event occurs that is
not directly controlled by the user. A click by the mouse is fully controlled by the
user, but a closing page, while selected by the user because she decided to go to
another page, occurs incidental to the event. (In this case, the event would be
going to another page.) In several examples, the onLoad event handler has been
used to illustrate different features of JavaScript and a few for onUnload, but the
other event handlers in this category have not been discussed at all.

The onLoad and onUnload event handlers are associated with the page itself, so
the <body> tag is where they are expected to be found—and where they usually
are found. The event occurs after the page has been loaded, so references to
forms that might be in the page that are parsed after the <body> tag can still be
included in any function launched by the onLoad event handler. A lesser known
use of the onLoad and onUnload event handlers is with the <image> tag. As soon
as an image has completed loading, the event can be used to launch a function.
Both tags use the following format:

<image src="someGraphic.jpg" onLoad="showLoaded();">
<body onLoad="showLoaded();">

The following example shows how the onLoad event handler can fill in a form and
announce the loading of an image. (An intentionally large graphic file helps in
understanding what happens in an onLoad situation.)

<html>
<head>
<title>Using Load with pages and images</title>
<script language="JavaScript">
 function whew() {
 alert("Finally got tubby loaded!");
 }
function fillEmUp() {
 var alpha="All done!";
 document.fuzzy.wuzzy.value=alpha;
 }
</script>
</head>
<body bgColor="floralwhite" onLoad="fillEmUp();">

<form name="fuzzy">
<input type=text name="wuzzy">
</form>
</body>
</html>

Both of the onLoad events fire different functions, so you can see that each is
working independently with the same type of event handler. The onUnload
handler works the same way, except that it occurs on closing.

When something goes wrong, you might want to know about it, especially when
debugging the program. Sometimes users will elect to abort a page themselves,
most notably when the page is slow in loading. The onError and onAbort event
handlers can help in both instances. Both event handlers are used in combination
with the <image> tag. The first script shows where to place an onError event

handler. (Be sure you do not have a file named importantPic.jpg in the folder
where you save this next file.)

<html>
<head>
<title>Error</title>
<script language="JavaScript">
function whoops() {
 alert("Ok, Elrod, where\'d you put the graphic file?")
 }
</script>
</head>
<body bgcolor="lightskyblue" >
<p>
<h3>This is an important picture you will want to see!</h3>

</body>
</html>

The onAbort event handler works in a similar manner to onError, except that,
rather than an error causing the show to come to a halt, the viewer has elected
to click the Stop button on the browser to stop the rest of the page from
loading— usually because of a long load. In those cases, you might want to put
an onAbort handler in the <image> tag with a message to the effect, that even
though the graphic is large, it is certainly worth waiting for!

onResize is the last event handler examined in this chapter. The event is one
that affects the window size, but the event handler can be placed in either the
<body> or the <frame> tags. In web page design, information returned from
onResize can be critical if linked to some other changes that you want to control
in the design. However, the event handler itself is fairly straightforward. Run the
following script, and change the size of the window to trigger the event:

<html>
<head>
<title>Size change</title>
<script language="JavaScript">
function sizeMeUp() {
 alert("Size change!")
 }
</script>
</head>
<body bgcolor="maroon" onResize="sizeMeUp();">
<p>
<h3>Nothing to see here folks! Try resizing the window.</h3>
</body>
</html>

Summary

Event handlers are the interactive triggers in HTML and JavaScript. Whether the
script traces a location or history property or launches a function, the World Wide
Web would be far less interactive and interesting without the event handlers.
They make things happen and give the designer tools to use events in planning
and executing a web site design.

The bulk of the event handlers do not now have good cross-browser compatibility
when used as properties of JavaScript objects. In future versions of JavaScript,
such as JavaScript 2.0, developers and designers fervently hope that all browsers
will follow the new standards consistently and will implement better event-
handling properties that will launch from a method rather than HTML. However,
rather than cursing the darkness of cross-browser incompatibility, using the
nonconflicting event handlers in a coordinated development with an HTML page
provides a wide variety of events from the mouse, keyboard, forms, and pages.
By using the rich mix of events, designers can set up a web environment in which
the user can experience a wide range of experiences that she herself causes to
happen.

Chapter 11. Making Forms Perform

CONTENTS>>

• The Many Types of Forms Elements IN HTML
• All Text Entries are Strings
• Passing Data Between Forms and Variables
• Forms as Arrays
• Types of Forms
• Buttons and Their Events

Forms used in conjunction with JavaScript can provide a wide source of engaging
and interactive pages for the designer. Besides being used as crucibles for
information such as name, address, and email, forms are used to respond to
different activities by the user. Everything from games to quizzes to online
calculators can be created using HTML forms and JavaScript together. So, if you
thought forms were boring, take a look and see what you can create using them
with JavaScript.

Two critical tasks await JavaScript. First, JavaScript can take the data within the
forms and pass it through variables from one place to another on an HTML page
or even to different HTML pages. By passing form data in variables, JavaScript
can be more precisely interactive with HTML than a generic set of data. Second,
JavaScript serves as a form-verification medium. All data headed for a database
or back-end middleware like ASP and PHP can first be checked for accuracy and
completeness by JavaScript. For example, JavaScript can make sure that any
email addresses that are entered into a form have the @ sign and, if the @ sign is
missing, alert the viewer to that fact. Beginning in Chapter 14, “Using PHP with
JavaScript,” where the book begins examining server-side scripting with
JavaScript as an intermediary, you will see how the form data can be checked
first by JavaScript before the variables in the forms are sent to the back end.

The Many Types of Forms Elements in HTML

The forms element in HTML is more like a mega-element with many other
elements within. Each of the HTML forms elements has a number of properties,
which in HTML are known as “attributes.”

• forms element (mega-element)
• forms elements (e.g., text boxes, buttons, etc.)
• form attributes (e.g., name, size, width, etc.)

In looking at an HTML page with a form, with the exception of the <textarea>
container, the only container within the forms object is the form itself. That is,
the forms element has an opening and closing tag, but none of the elements
within the container has closing tags:

<form>
 <form element 1>
 <form element 2>
 <form element 3>
</form>

As far as JavaScript is concerned, the forms object is one big array. Each new
form container is an element of the document array, and each element within
each forms object is an element of that form’s array. Later in this chapter, form
arrays are examined in detail, but for now, it is important to understand that an
array relationship exists between JavaScript and HTML forms.

The following list summarizes all of the form objects in HTML tags, arranged by
type:

HTML element

Text input

• <input type=text>
• <textarea> </textarea>
• <input type=hidden>
• <input type=file>
• <input type=password>

Buttons

• <input type=button>
• <input type=reset>
• <input type=submit>
• <input type=radio>
• <input type=checkbox>
• <input type=image>

Menu

• <select>
• <select multiple>
• <option>

JavaScript’s relationship to the HTML tags has been illustrated in numerous
examples in previous chapters, but it bears repeating. As a general format, the
relationship between the objects and properties in JavaScript is the same as
between the form order and name attributes in HTML. The following HTML tags:

<form name="alpha">
 <input type =text name=”beta”>

</form>

are addressed like this in JavaScript:

document.alpha.beta;

Attributes of the secondary elements (forms is the primary element) are treated
as properties of the secondary elements. For example, if you wanted to know how
long a string in a text box is, you would address it as follows:

document.alpha.beta.value.length;

You might wonder why the value and the length properties had to be included
instead of just length. The property itself has no length unless you’re looking for
the length of an array. However, the value assigned to the property does have a
length, and that is what you want. If you entered this, you could find out the
length of the array, not any of the values in the elements of the form:

document.alpha.length;

All Text Entries Are Strings

Another feature of form data to remember is that it treats all entries as strings.
For example, in setting up an online boutique, you might want to perform math
on data entered by the user. The following little script attempts to add two
numbers:

<html>
<head>
<title> Text Box Math </title>
<script language="JavaScript">
function addEmUp(){
 var sum=document.calc.aOne.value + document.calc.aTwo.value;
 alert(sum);
 }
</script>
</head>
<body bgcolor="#ffffaa">
<h4>Enter 2 numbers and press the Sum button.</h4>
<form name="calc">
<input name="aOne" type=text ><P>
<input name="aTwo" type=text ><P>
<input type=button value="Sum" onClick="addEmUp()">
</form>
</body>
</html>

When you run the script, you will see, as shown in Figure 11.1, that instead of
getting a sum, you get a string of two numbers. The script concatenated two
strings instead of adding two numbers.

Figure 11.1. Instead of adding numeric values from text
fields, JavaScript concate nates them.

While numbers are unsigned (they are neither integers nor floating point) in
JavaScript, strings that are transformed into numbers are converted into either
integers or floating-point numbers using one of the following functions:

parseInt()
parseFloat()

For example, if your string is 34.763, use parseFloat () to preserve the
decimal points, or use parseInt () to return the integer, rounded down. By
changing this line:

var sum = document.calc.aOne.value + document.calc.aTwo.value;

to

var sum = parseFloat(document.calc.aOne.value) + parseFloat
(document.calc.aTwo.
value);

your output changes to reflect the sum of two floating-point numbers.

NOTE

If you do not want integers rounded down but you want them rounded to the
nearest integer, use Math.round (). The Math.ceil () function rounds
numbers to the next highest integer, and Math.floor () rounds numbers down.
The Math functions can be used with either numbers or strings.

While text or textarea values are always in strings, changing them to numbers
is quite easy, and JavaScript provides several functions to help you. However, the
difficult part is remembering to do so!

Passing Data Between Forms and Variables

Before going on to discuss arrays, you need to understand the relationship that
exists between HTML form properties and variables and values in JavaScript. You
should understand something about passing data between forms and JavaScript
variables. Consider the following form in an HTML page:

<html>
<body bgcolor=#BedFed>
<form name = "stateBird">
 <input type="text" name="state">
 <input type="text" name="bird">
</form>
</body>
</html>

The form itself is treated as an object in JavaScript, and, as was seen in previous
chapters, objects are one of the data types that you can put into a JavaScript
variable. The general format for using form data to a JavaScript variable is shown
here:

var variableName = document.formName.propName.value;

For example, you can define the following JavaScript variables with the values of
the contents of the form like this:

<script language="JavaScript">
var state=document.stateBird.state.value;
var bird=document.stateBird.bird.value;
</script>

Note that the element names in the form are being used as variable names. Now
the object values are in variables using names of properties of the form object.
The data values, however, are dependent on what a user puts into the text boxes.

Putting these together along with a function and a button to fire off the function,
you can see how the values of the variables change with output from a user.

formVariable.html
<html>
<head>
<script language="JavaScript">
function getBird(){
 var state=document.stateBird.state.value;
 var bird=document.stateBird.bird.value;
 alert("The state bird of " + state + " is the " + bird);
 }
</script>
</head>

<body bgcolor=#BedFed>
<form name = "stateBird">
<input type="text" name="state">:State Name

<input type="text" name="bird">: Name of State Bird<p>
<input type="button" value="Bird Button" onClick="getBird()";>
</form>
</body>
</html>

As you can see in Figure 11.2, the data entered into the form are echoed back in
an alert window indicating the values in the forms were passed to JavaScript.

Figure 11.2. Data entered by users can be passed to
variables in JavaScript.

By the same token that values can be passed from a form to a JavaScript variable,
the opposite is true. Data in JavaScript can be passed to a form using the
following general format:

var variableName = someValue;
document.formName.propName.value = variableName;

First, the JavaScript variable is declared and given a value. Then, the form object
gets its value from the variable. The process simply reverses passing data from
the form to the variable. The following program shows how to pass values from a
variable to a form object in HTML.

variableForm.html
<html>
<head>
<script language="JavaScript">
function putBird() {
 var state="New Mexico";
 document.stateBird.state.value=state;
 var bird="Roadrunner";
 document.stateBird.bird.value=bird;

}
</script>
</head>
<body bgcolor=#BedFed>
<form name = "stateBird">
 <input type="text" name="state;">:State Name

 <input type="text" name="bird">: Name of State Bird<p>
 <input type="button" value="Bird Button" onClick="putBird()";>
</form>
</body>
</html>

Figure 11.3 shows what appears on the screen when the function fires. Until Bird
Button is pressed, the two form windows are blank, indicating that the values in
the JavaScript variables were indeed passed to the form object.

Figure 11.3. Data defined in JavaScript variables
appears in the form windows.

Forms as Arrays

When you create a form in HTML, you create a form array. The development of
an HTML form has a parallel array in JavaScript. As each form is developed, a
form element is added to the array. Likewise, as each element within the form is
developed, another subelement is added to the array. All forms in a form array
are properties of the document object and are referenced as forms[n]. Within
each forms[] element, all of the elements added in the <form> container are
elements of the form[] object. Table 11.1 shows the HTML and JavaScript
parallels in developing an array.

Table 11.1. Parallel HTML and JavaScript Forms and Form Elements
HTML JavaScript

<form name="first"> document.forms[0];
<input type=text> document.forms[0].elements[0];

<input type=button> document.forms[0].elements[1];
<textarea></textarea> document.forms[0].elements[2];
</form>
<form name="second"> document.forms[1];
<input type=text> document.forms[1].elements[0];
<input type=button> document.forms[1].elements[1];
<textarea></textarea> document.forms[1].elements[2];
</form>

Note in Table 11.1 that, like all arrays, the elements begin with 0 instead of 1.
Also note that, in the JavaScript for the second form, the forms[] element is
equal to 1 but the first element of the forms[1] element is 0 because it is the
first element of the second form. Also, note that <textarea> is treated the same
as the <input> type of elements.

Forms and Elements

Because forms are numbered elements (properties) of the document object or
form array, and because elements are numbered elements of the form array also,
either or both of forms[] or elements[] can work with loops to enter or extract
data in forms. By looping through a forms[] array, the form elements can be
used in sequential order.

In the following script, a JavaScript function loops through the first of two forms.
A button in the second form fires the function that sends the data to a text area
that is part of the second form.

NOTE

The reference to the text area element is document.forms[1].elements[1].
Because elements[1] is the second element in the second form, you might
wonder why element[0] is not addressed. The reason lies in the fact that the first
element in the second form is the button, not the text area. If you used
element[0], the text would attempt to stuff itself into the button.

The script itself is fairly simple; however, because of all of the table tags required
to format the script, a lot of the tag code is for the table elements.

formArray.html
<html>
<head>
<title> Form Array </title>
<style type="text/css">
body {
 background-color:fe718 ;
 font-family:verdana
 }
.inBox {
 color:white;
 font-family:verdana
 }

h3 {
 font-size:18pt;
 color:a4352f
 }
</style>
<script language="JavaScript">
function sendEm() {
 var newDisplay="";
 var myForm=document.enter.length;
 for (var counter=0;counter < myForm;counter++) {
 newDisplay += document.forms[0].elements[counter].value + "\n";
 }
 document.forms[1].elements[1].value = newDisplay;
}
</script>
</head>
<body>
<h3>Enter the information:</h3>
<form name="enter">
<table border="0" cellpadding="3" cellspacing="0" height="78"
width="auto"
bgcolor="#8e58ad">
 <tr>
 <td colspan="2"><input name="fName" type=text
><span
 class="inBox"> First Name
</td>
 <td colspan="2"><input name="lNamename"
type=text ><span
 class="inBox"> Last
Name</td>
 </tr>
 <tr>
 <td><input name="address" type=text ><span
 class="inBox">
Address</td>
 <td><input name="city" type=text ><span
 class="inBox"> City </td>
 <td><input name="state" size = 2 type=text
><span
 class="inBox"> State</td>
 <td><input name="zip" size=6 type=text ><span
 class="inBox"> Zip Code
</td>
 </tr>
 <tr>
 <td colspan="4"><input name="email" type=text
><span
 class="inBox"> Email </td>
 </tr>
 </table>
</form>
<form name="transfer">
 <input type=button value="Transfer Array"
onClick="sendEm()"><p>
 <textarea rows=8 cols=80 name="gather"></textarea>
</form>
</body>
</html>

Because text windows have similar formatting requirements to alert boxes, the
escape sequence \n is used to create a new line instead of
, as has been
employed to create a line break when document.write() is used to display
output to a page. Figure 11.4 shows the output for the script.

Figure 11.4. You can use loops to extract and pass data
between forms.

TIP

Even if you prefer to hand-code JavaScript to reduce code bloat found in the web
site design applications, these tools (such as GoLive, Dreamweaver, and
FrontPage) make it much easier to set up your tables. You can always make finer
changes in the HTML and JavaScript code, but trying to design and format a page
without some type of WYSIWYG (What You See Is What You Get—wizzy-wig)
application is not a challenge that most designers need.

Addressing and Naming Forms

In the previous script, most of the references to the forms were to an array.
However, you might have noticed that all of the elements except for the button
had a name. Naming forms is a crucial step even if you address all elements as
part of an array. Your script is much clearer if you have meaningful names
assigned to all of the parts rather than array references. Using names makes
everything much clearer. Table 11.2 shows some samples of well-named tags and
the JavaScript reference to the form elements.

Table 11.2. Clear Reference Names
HTML JavaScript

<form
name="addressBook">

document.addressBook;

<input type=text document.addressBook.client.value

name="client"> ="NanoNanoTech Inc.";
<input type=text
name="lawyer">

document.addressBook.lawyer.value ="Sue A.
Lot";

<form
name="artSupplies">

document.artSupplies.length;

<input type=text
name="brushes">

document.artSupplies.brushes.value ="Camel
Hair";

Not only do clearly named forms make debugging and updates a lot easier, but
they also are essential for passing data to back-end sources. Beginning in
Chapter 14, when JavaScript and different types of server-side programs are
explored, you will find that the variable names passed to PHP, ASP, and Perl/CGI
scripts are the names that you put into the HTML tags in forms. In cases when no
server-side scripts exist in a web site, a smart designer still has named forms and
form elements so that if a client wants a back end for a site, it’s all ready to go.

Types of Forms

At the beginning of the chapter, you saw a list of different types of form
attributes in HTML that JavaScript uses as sources of data input and extraction,
for launching scripts, and for other action chores. This section of the chapter
examines each element in the general categories established at the outset in
more detail. Each of the element’s JavaScript-relevant attributes are examined
and discussed.

Input for Typing and Displaying

The most flexible interactive component on a web page is the text input element.
As listed at the beginning of the chapter, five types of text input are found in
HTML:

• <input type=text>
• <textarea> </textarea>
• <input type=hidden>
• <input type=file>
• <input type=password>

Throughout the book and this chapter, you have seen the input tags with the text
type or the textarea containers. The hidden and password input tags work in a
very similar way to input text, while the input file type is quite different.

Input Text

The input text tag has four important attributes relevant to both JavaScript and
using forms:

• name
• size
• maxlength
• value

Of all of these attribute, name is the most important for identifying the element
and its use as a variable name in server-side scripts. size refers to the size of

the text window. The default size is 20, but you will have the opportunity to
change the size to fit your needs. For example, as shown in the previous example,
you need only two characters for state abbreviations and six for standard size ZIP
codes. For street addresses, you might want 30 or 40 spaces available.

Related to size is the maxlength attribute. The maxlength attribute forces the
user to a top limit. For example, if the user attempts to put in more than two
characters in a text box set up for state abbreviations, she will find that it is
impossible to do so.

Often, the value attribute is left out of a tag using input text. Usually, the page
designer wants the user to put in her own information that will be used by the
script. However, you can use default values in a text box as a prompt for the user.
The following script shows a simple example of using all of the text box attributes:

<html>
<head>
<title> Text Box </title>
<script language="JavaScript">
function tooShort() {
 if (document.users.userName.value.length < 7) {
 alert("Your username must be at least 7 characters:");
 } else {
 alert("Your username is accepted:");
}
}
</script>
</head>
<body bgcolor="goldenrod">
<h4>Enter a user name between 7 and 12 characters long:</h4>
<form name="users">
 <input type=text name="userName" size=12 maxlength=12
value="username"><P>
 <input type=button value="Check user name"
onClick="tooShort();">
</form>
</body>
</html>

Because the maximum size of word is restricted to 12 in the text attributes, using
both maxlength and size, JavaScript does not have as much work to do. The
function checks to see whether the length is correct and generates an alert
window to announce whether the user name is acceptable. However, because the
maximum length is handled by the HTML, all JavaScript has to do is to check for a
length that is too short.

Textarea

The textarea container can be used as both an input and an output source of
data in HTML and with JavaScript. Its key attributes are a bit different from those
of the text box because both width and height must be included. The following
four attributes are the most pertinent:

• name
• cols
• rows

• value

The following script shows how the value of the textarea, placed into an object,
is filled with the wisdom of someone’s boss:

<html>
<head>
<title> Text Area </title>
<script language="JavaScript">
function setUp() {
 var TA=new Object();
 TA=document.memo.today;
 TA.value="JavaScript can be used with a variety of
applications and
 designs. This message shall not be altered by the viewer
on pain of a
 nose snuffle. Just try it! \n Signed, \n The boss”
 }
</script>
</head>
<body bgcolor="palegoldenrod">
<h3>Daily Memo:</h3>
<form name="memo"”>
 <textarea cols=40 rows=8 name="today" readonly=0></textarea><p>
 <input type=button value="See Message" onClick="setUp();"”>
</form>
</body>
</html>

Hidden Text: Passing Unseen Data Between Pages

Hidden text boxes might not seem like too useful of a form element for designing
web sites. However, hidden forms can be extremely useful when passing
information between different pages in a frameset. To create a maze-like
navigation system, used for anything from a cavern-and-tunnels adventure game
to a problem-solving educational experience, knowing how to use JavaScript to
simulate position is crucial.

The trick in any navigation system in which you have one driver page in a frame
moving other pages left, right, forward, backward, or in any other combination of
moves is to put the position information in the page that is being driven—not in
the driver page. In this way, each page that is moved “knows where it is.” That is,
relative to any direction, you can put the information in the page that is going to
be moved in any direction.

The next question is, “Where do you put the information on a page so that
another page can use it?” The answer to that is, “Put it in a hidden form
element!” To access form information in one page from another page in a
frameset, use the following format:

parent.frame.document.form.element.value

Here, the element value is a URL. Then this statement will change the page in the
frame to the value of the URL in the form element:

parent.frame.location = parent.frame.document.form.element.value

By hiding the information in a hidden form on the page being moved, nothing is
visible to get in the way of your design. This next script is a bit involved but really
very simple illustration of how hidden forms can be used to pass along
information in a circular movement of pages going to the left or right. A frameset
and common CSS style aids in holding it all together.

First, the CSS has a common set of body background color, center text alignment,
font, and font size. Each of the pages has a different color font to help identify
the page. The driver page has a background color added to the font color to make
it stand out a bit more.

hidden.css
body {
 font-family:verdana;
 font-size:16pt;
 text-align:center;
 background-color:ffdb18
 }
.fontA {color:062456}
.fontB {color:f26d00}
.fontC {color:e43b24}
.fontD {color:188b57}
.fontDriver {
color:e43b24;
background-color:062456
}

The frameset page is important for naming the frame of primary reference. In
this frameset, the target frame is the one named info. By removing all borders,
the page appears to be a single unified page rather than a frameset.

hiddenSet.html
<html>
<head>
<title>Cross Page Communication</title>
</head>
<frameset rows="*,*" border=0 framespacing=0 frameborder=0 >
 <frame src="infoA.html" name="info" scrolling=no>
 <frame src="driver.html" name="navigate" >
</frameset>
</html>

The next step is to create a page that will have the navigation buttons. By using
“left” and “right” directions only, the task is simple and focuses on the whole
concept of moving one page with another by taking information from the page
that is moved. However, you could add any combination of moves, including
vertical as well as horizontal movement. The point is to use the information on a
page, send it to another page, and then move the page with the information. It
would seem to be a lot easier just to put the buttons on the page being changed
and click buttons on that page. That is certainly true, but you would be unable to
have a single navigational page that would not blink every time a new page is
loaded. By using a single navigation page, not only do you have less coding, but
you also would have a page that would unblinkingly stay in place while the other

pages move. (You always get a little blink when one page loads and another
unloads.)

The functions that make all of this work are quite simple. The function to move
left is as follows:

var left=parent.info.document.position.hereL.value;
parent.info.location=left;

The function first places the hidden document element named hereL into a
variable named left. Then the function uses the value of left, which now
contains the URL for any left movement, and places it into the location of the
frame that holds the page with the directional information. To see how this works,
the following statement puts it into a single step using the array values instead of
names:

parent.frames[0].location =
parent.frames[0].document.forms[0].elements[0].value;

In other words, the driver page tells the other page to find out where it goes next
by specifying where it should look in itself—the hidden form elements. (Yoda
would say, “The force is within you.”)

driver.html
<html>
<head>
<link rel=stylesheet href="hidden.css">
<title>Driver</title>
<script language="Javascript">
function goLeft() {
 var left=parent.info.document.position.hereL.value;
 parent.info.location=left;
 }
function goRight() {
 var right=parent.info.document.position.hereR.value;
 parent.info.location=right;
 }
</script>
<body>
<div class=fontDriver>Click one of the buttons below</div>
<p>
<form name="direction">
 <input type=button value="<=Left" onClick="goLeft()">
 <input type=button value="Right=>" onClick="goRight()">
</form>
</body>
</html>

The final step is to have pages with the hidden forms. All four of the following
pages are essentially the same, but each has a unique direction to go, depending
on whether the left or right button is pressed in the driver page. If you wanted to
have more directions, all you need to do is to add another hidden form with the
information (URL) describing where to go.

infoA.html

<html>
<head>
<link rel=stylesheet href="hidden.css">
<title>InfoA</title>
<body><p>
<div class=fontA>
This is Page A<div>
<form name="position">
 <input type=hidden name="hereL" value="infoB.html">
 <input type=hidden name="hereR" value="infoD.html">
</form>
</body>
</html>

infoB.html
<html>
<head>
<link rel=stylesheet href="hidden.css">
<title>InfoB</title>
<body><p>
<div class=fontB>
This is Page B<div>
<form name="position">
 <input type=hidden name="hereL" value="infoC.html">
 <input type=hidden name="hereR" value="infoA.html">
</form>
</body>
</html>

infoC.html
<html>
<head>
<link rel=stylesheet href="hidden.css">
<title>InfoC</title>
<body><p>
<div class=fontC>
This is Page C<div>
<form name="position">
 <input type=hidden name="hereL" value="infoD.htm">
 <input type=hidden name="hereR" value="infoB.html">
</form>
</body>
</html>

infoD.html
<html>
<head>
<link rel=stylesheet href="hidden.css">
<title>InfoD</title>
<body><p>
<div class=fontD>
This is Page D<div>
<form name="position">
 <input type=hidden name="hereL" value="infoA.html">
 <input type=hidden name="hereR" value="infoC.html">
</form>
</body>
</html>

Figure 11.5 shows how the frameset appears when the user clicks his way to
Page C.

Figure 11.5. The page in the bottom frame navigates the
page in the top frame by using information in hidden

forms in the top page.

Using hidden forms need not require assigning a value to the form. You can pass
information to a hidden form just like you can a regular text box. However, in the
previous example of using hidden forms, the purpose of the forms is to give
information, not to receive it. For a very creative site, though, the information in
the hidden forms could be dynamic, and, depending on circumstances in the
context of the user clicking buttons, the information could change.

File Finder

Using file form elements is simple enough and can be useful in browsing files on
local drives and disks. When you put in the tag <input type=file>, HTML
automatically builds a Browse button and a text box. When the Browse button is
clicked, an Open dialog box appears and you can select files from your own
computer.

However, the purpose of the input text file form is to upload a file from the user’s
computer to a web server. In Chapter 16, “CGI and Perl ,” you will see how to use
CGI with input text files to upload files from your computer to a web server. The
following simple utility to browse your drives and load a file shows you what the
form generates:

<html>
<head>
<title>File Form</title>
<script language="Javascript">
function goGetIt() {
 window.location= document.seek.browseMe.value;
 }

</script>
<body>
<form name="seek">
 <input type=file name="browseMe" size=40 ><P>
 <input type=button value="Click here to load file."
onClick="goGetIt();">
</form>
</body>
</html>

Figure 11.6 shows you what you will see when you use the input text file form.

Figure 11.6. The input text file form allows you to
browse your files and upload pages to a web server.

NOTE

Netscape Navigator 6 users see the entire path on their desktop to a file, even if
opened in the same directory as the web page browsing.

Password Form

The final type of input text form to be examined is the password form. It works
just like an input text form, but no alphanumeric characters appear when the
user types in her password. Instead, the user sees black dots. However, whatever
is typed in a password form can be compared with alphanumeric characters in
JavaScript in the same way that any value that is in a text box can be. The
following example shows one typical use of the input password form element:

<html>
<head>
<style type="text/css">
.blackPatch {
 background-color:000000

 }
</style>
<title>Password</title>
<script language="Javascript">
function checkIt() {
var verify=document.pass.word.value;
if (verify=="JavaScript") {
 alert("You may pass.")
} else {
 alert("Sorry Jack, you\'re out of luck.")
 }
}
</script>
<body>
<h3>Please enter your password and then

 click on the page out of the text box:</h3>
<div class=blackPatch>
<form name="pass">
 some space <input type=password name="word"
onBlur="checkIt();"> more space
</form>
</div>
</body>
</html>

If you want to hide the password from anyone who knows how to use view source
on his browser, you can put the function in an external JavaScript file and hide it
someplace where it cannot be easily found and viewed (see Figure 11.7). (For
serious hiding, you will need something more secure than an external .js file.)

Figure 11.7. The password input box shows no
alphanumeric characters, but JavaScript can use the

input in the same way as an uncoded text box.

Buttons and Their Events

Throughout the book, you have seen several examples of buttons. Usually, the
buttons are employed to fire functions and sometimes forget that buttons are a

form element instead of something else. The following are all of the HTML button
elements to be discussed in this section:

• <input type=button>
• <input type=reset>
• <input type=submit>
• <input type=radio>
• <input type=checkbox>
• <input type=image>

The Generic Button

By this point in the book, you have probably seen most, if not all, of the
attributes associated with the generic input button form. However, the following
attributes are the most important to keep in mind:

• name
• value
• Mouse events

onClick

onMouseOver

onMouseMove

onMouseDown

onMouseUp

onMouseOut

onFocus

onBlur

Usually, onFocus and onBlur are associated with input text; however, both event
handlers work with the button as well. The following shows a simple example.
(You will need NN6+ or IE5+ for this next script.)

<html>
<body>
<form >
 <input type=button value="Blur Test" onBlur="alert('Blur
works')">
 <input type=button value="Focus Test" onFocus="alert('Focus
works')">
</form>
</body>
</html>

Most importantly for the button is the fact that it can call upon an event to fire a
JavaScript function. The value attribute actually does store a value in a button,

and the value can be changed dynamically. However, for most applications, the
button value is simply used to identify what the button does.

Clearing Forms with the Reset Button

In previous chapters, you have seen the Reset button used to clear forms.
However, the Reset button has the same attributes as other buttons, in addition
to clearing forms. You can simultaneously launch a function using a Reset button
while clearing forms. Enter the following script and open it in a browser window.
Type some text into the text box and then click the button.

<html>
<body>
<form>
<input type=reset value="Click to Launch" onClick="alert('Function
launched')">
<input type=text>
</form>
</body>
</html>

Usually, the HTML that defines a Reset button is sufficient for most scripts;
however, if the need arises to use the button to launch a function in addition to
clearing the form, you can do so. The JavaScript reset() method emulates the
button’s action, and if the generic Reset button generated by HTML does not fit
into your design, you may elect to do so. Also, you will want to use the button’s
value attribute to better clarify what the button does (such as Clear Form and
Start Over).

The Submit Button

In the chapters on using the server-side scripts (beginning with Chapter 14), you
will use the Submit button to call on scripts running on the server. For example,
the following script segment shows the relationship between the Submit button
and the <form> tag in launching a server-side script:

<form name=”storage” method=get action=”showStuff.php”> //Script on
server to be launched
<input type=submit> //Effectively fires the action in the <form> tag.

You can use a form.submit() script in JavaScript to launch a submit event and,
design-wise, you might find it useful to do so. So, instead of having the generic
Submit button generated by HTML, you can use any image or text style that you
want as a button representation.

From the Submit button you can fire a simultaneous event in the <form> tag.
Often used for form validation, data in the form will first be reviewed for accuracy
before being sent to a database on a server. The onSubmit event handler
activates when a Submit button belonging to the form is activated. For form
validation using onSubmit, you need to write your JavaScript in relationship to a
true or false outcome using the return keyword, as shown in the following
simple script for form validation:

<html>
<head>
<title>Simple Validation</title>
<script language="JavaScript">
function CheckItOut(form) {
 var yourName=document.folks.info.value;
 if(yourName=="") {
 alert("You know your name don\’t you? \n So type it in!");
 return false;
 } else {
 alert("Thanks, " + yourName + " for sending in your
name.");
 return true;
 }
}
</script>
</head>
<body>
<form name="folks" onSubmit="return CheckItOut(this)" >
Your Name Please:
<input type=text name="info"><p>
<input type=submit value="Click to Validate and Submit" >
</form>
</body>
</html>

When using a function that returns true or false and when setting up your
onSubmit event to expect a return of some sort, a false return effectively
cancels the submit. By creating a submit cancellation, the user is allowed to fill in
those portions of the form not filled in at all or filled in incorrectly (such as a
missing “@” in an email address).

Radio and Check Box Buttons

The radio and check box buttons can be evaluated as being checked or not—a
Boolean dichotomy. The key difference, and value, of the radio button is that only
a single radio button with the same name can be checked. If you attempt to
check more than one radio button with the same name, one already checked will
pop to an unchecked position. With check box buttons, the user can check as
many as she wants. Each button has three pertinent attributes:

• name
• checked
• value

The general format inside a form container of each button is shown here:

<input type=radio name="radName" value="someValue" checked=Boolean>
<input type=checkbox name="checkName" value="someValue"
checked=Boolean>

To be useful, you need to include both the name and the value attributes.
Optionally, you can have the checked attribute included as a Boolean value of
true or false.

Both the checkbox and radio objects can be used to launch JavaScript functions.
The onClick event handler can be added to either a checkbox or a radio tag.

Read the checked status of either the check box or radio button in JavaScript
through the checked property of either objects. A generic JavaScript conditional
statement examining the checked status of a radio button would read as follows:

if(document.form.radio.checked==true) {
 var storage=document.form.radio.value
}

The checked property works something like a value property, except that it has
only Boolean values. Because the buttons both have a value attribute, the
buttons also have a value property in JavaScript, as the previous generic
statement shows.

This following script provides an example of using the two different types of
buttons. The textarea in the example script shows the returns of the values in
the checkbox and radio button tags.

radioCheck.html
<html>
<head>
<title>Checkboxes and Radio Buttons</title>
<style type="text/css">
body {
 font-family:verdana;
 font-size:11pt;
 background-color:33ff66;
 font-weight:bold
}
.fStyle {
 color:595959;
 background-color:b3ffcc;
}
</style>
<script language="JavaScript">
function sortItOut(form) {
 var display="Key Feature and Components \n\n";
 var reviewer =new Object();
 reviewer=document.hardware;
 for (var counter=0; counter < reviewer.length; counter++) {
 if(reviewer.elements[counter].checked) {
 display += reviewer.elements[counter].value + "\n";
 }
 }
 reviewer.showTime.value=display;
}
</script>
</head>
<body onLoad="document.hardware.reset()">
<form name="hardware">
 <div class="fStyle">Pick one of the following as the most
important:

 <input type=radio name="components" value="Cost" checked=true>
Cost

 <input type=radio name="components" value="Reliability">
Reliability

 <input type=radio name="components" value="Reputation"
 onClick="alert('Reputation?')"> Reputation

 <input type=radio name="components" value="Ease of Use"> Ease
of use<p>

Which of the following do you plan to purchase with your computer?
Check all that apply:<p>

 <input type=checkbox name="printer" value="Printer" >
Printer

 <input type=checkbox name="disk" value="High Capacity Disk">
High Capacity Disk

 <input type=checkbox name="scan" value="Scanner" checked=true>
Scanner

 <input type=checkbox name="mem" value="Additional Memory">
Added Memory<p></div>

 <textarea cols=50 rows=8 name="showTime"></textArea>
 <input type=button value=" Sort It Out "
onClick="sortItOut(this.form)">
</form>
 </body>
 </html>

When you run the script, you will notice that some of the boxes are already
checked because they were set as checked in the HTML tags. However, as soon
as you click on a check box that has a default checked status or on an unchecked
radio button, it becomes unchecked. (See Figure 11.8.)

Figure 11.8. Both radio buttons and check boxes can
pass values through JavaScript.

Image Form Elements

The input image is like a button object, except that the form element has a
source image. The general format of the input image element is this:

<input type=image scr="imageURL" name="elementName">

The input image form works almost identically to using a graphic for links with
the <a href...> tag. However, when using an input image element as part of a
form, the element (object) is part of the forms object instead of the links object.
Therefore, a reference to an input image object in JavaScript would be this:

document.formsName.elementName

For designing web sites, having the capability to make your form buttons look like
anything you want frees you from having to use the limited set of buttons built
into HTML. The following script provides an example. (You will need to create a
JPEG or GIF object named heart.jpg or heart.gif in the shape of a heart for a
button.)

<html>
<head>
<style type="text/css">
body {
 font-family:verdana;
 font-size:11pt;
 color:red;
 background-color:#ffb7d0;
 font-weight:bold;
</style>
<title>Image Form Element</title>
<script language="Javascript">
function lovesMe() {
 var cupid=Math.random();
 cupid=Math.floor(cupid*100);
 var throb="";
 if (cupid > 50) {
 throb=”He loves me!"
 //Change the gender pronoun to your preferences
 } else {
 throb=”He loves me not...."
 }
 alert(throb);
}
</script>
<body>
<center>
<form name="heart">
Click the heart five times to learn how he feels about you! <p>
 <input type=image src="heart.jpg" name="ache"
onClick="lovesMe();"
 border=0><p>
If the answer is incorrect, click the button five more times....
</form>
</center>
</body>
</html>

Figure 11.9 shows the graphic button—a heart-shaped graphic.

Figure 11.9. Image buttons allow for far greater design
freedom.

You may include rollovers on your input image button elements. In the previous
script, for example, the reference to the pertinent form object in JavaScript would
be as follows:

document.heart.ache.src=newImage.src;

In this way, the design can both contain a button that looks the way you want
and has the liveliness of a rollover.

Menus

The last type of form element is the drop-down menu. The menu element in
HTML is designed around three tags:

• <select>
• <select multiple>
• <option>

The <select> or <select multiple> containers contain any number of options.
In a similar manner to radio buttons and check box buttons, respectively, the
<select> tag is mutually exclusive and the <select multiple> tag is not. So, if
the user has only a single choice, use the <select> tag; if he has multiple
choices, use <select multiple>.

Each <select> container is an array element of the forms object, and each
<option> is an array element of the <select> container. For example, consider
the following menu set up with the <select> container:

<form name="menu">
 <select name="choose">

 <option> Randy
 <option> Judy
 <option> Fred
 </option>
 </select>
</form>

To reference the option Fred, the JavaScript array would read as follows:

document.forms[0].choose.options[2].text;

Note that the select object must be referenced by its name (choose), not an
element[] number in the forms[0] array. Also note that Fred is a string literal
in the text property, not the value property. The value property when dealing
with select and option objects is the value assigned with in the <option> tag,
such as this:

<option name="chooseMe" value="eternal wisdom"> Comedy

The following JavaScript statement would put the string literal eternal wisdom in
the variable named stuff, assuming that the second option was Comedy:

var stuff = document.formName.selectName.options[1].value;

Most form elements in HTML have a value in the JavaScript object that reflects
the corresponding HTML element. However, with the select object, the key value
is called selectedIndex, reflecting which of the options the user selects. The
selectedIndex keyword returns an array value for the options element. For
example, consider the following HTML script and JavaScript reference to what is
selected.

HTML
<form name="iceCream">
 <select name="flavors">
 <option> Chocolate
 <option> Strawberry
 <option> Vanilla
</option> </select></form>

JavaScript
var getChoice = document.iceCream.flavors;
var youChose = getChoice.options[getChoice.selectedIndex].text;

For example, if the user chooses Strawberry, the selectedIndex would return 1
because the second option is recognized as options[1]. Look at the following
example to see what’s going on under the hood in the page using a menu:

<html>
<head>
<title>Menu Form</title>
<script language="Javascript">

function getFlavor() {
 var scoop = document.iceCream.flavors;
 var cone = scoop.options[scoop.selectedIndex].text;
 if(cone !="Flavor Menu") {
 alert("Here\'s your " + cone + " ice cream cone!")
 }
}
</script>
<body onLoad="document.iceCream.reset();">
<form name="iceCream">
<h3> Select your flavor from the menu:</h3>
 <select name="flavors" onChange = "getFlavor()">
 <option name="dummy" value=null>Flavor Menu
 <option >Peach
 <option >Peppermint
 <option> Rasberry Swirl
 <option> Rum Raisin
 </option>
 </select><p>
</form>
</body>
</html>

The first option text is Flavor Menu. This text is added because, without it, you
cannot effectively use the onChange event handler to select the choice at the top
of the menu. Essentially, the option is a dummy one that allows a label inside the
menu.

If you use the <select multiple> tag, the viewer can see all of the selection
options at once. If you have room on your web page, using <select multiple>
is usually easier for the user because she doesn’t have to hold open the menu
while making a choice. However, your own design considerations outweigh utility
in this case. In the previous example script using <select>, change the tag to
<select multiple> and run the script in your browser again.

Summary

Forms are one of the most important elements in HTML and JavaScript. With
forms, the web designer can engage the viewer, provide feedback, and move
information to different locations. The window boxes and buttons are both
sources of data entered by the user and events that can be dynamically used in a
page design. For purposes of discussing forms with design, they were categorized
into text, buttons, and menu types of forms. Each of these form elements is
further broken down into the different components. However, as JavaScript
objects, most appear very much the same.

Menu forms are a bit different, but, when working with forms in JavaScript, each
element still is a property of the document and the form. In turn, the attributes of
the different types of form elements are properties, and all line up in similar
JavaScript fashion as objects that can be used in very creative ways.

In the third section of this book, beginning with Chapter 14, forms are the
doorway between HTML and server-side scripts and data. JavaScript is the
doorkeeper for user-entered data and serves to verify data before passing it
along to the back end. All of the data passed through the JavaScript filer, though,
first appears in forms in some manner. So, while the next two chapters only

marginally rely on JavaScript working with forms, subsequent chapters have a
central role for forms and JavaScript.

Chapter 12. Dynamic HTML

CONTENTS>>

• What is Dynamic HTML?
• Cascading Style Sheets
• Borders
• External CSS Style Sheets
• The Role of JavaScript in Dynamic HTML

What Is Dynamic HTML?

With version 4 of both Internet Explorer and Netscape Navigator came Dynamic
HTML (DHTML). At the heart of DHTML is the capacity to move objects
dynamically on an HTML page and to use absolute positioning. Actually, absolute
positioning and dynamic movement are related because changing one absolute
position, or a position relative to an absolute one, to a different position simulates
movement. To make DHTML work, something had to be available to trigger or
drive the dynamic changes. For the most part, this role has been filled by
JavaScript and event handlers.

In addition to the capability to put an object where you want it on a page without
using tables or frames in HTML, another feature of DHTML is Cascading Style
Sheets (CSS). As demonstrated in examples throughout the book, CSS is a
designer’s best friend. Not only can all manner of font styles, types, sizes, and
weight be controlled, but so can margins, indents, and other structural elements
in text.

DHTML started the movement to separate style from content. In other words,
HTML tables were never intended to control layout. It is much more ideal to
control layout with one external style sheet.

About the same time that DHTML was introduced, programs such as Macromedia
Dreamweaver and later Adobe GoLive made creating DHTML sites that much
easier, albeit with some code bloat and hitches with cross-browser and cross-
platform compatibility. However, the cross-browser incompatibility was not the
application’s fault; it was the fault of Netscape and Microsoft for not adhering to a
common standard developed by the World Wide Web Consortium (W3C) or
working out one between themselves. To make a long and sordid story short, the
incompatibilities between NN4 and IE4 were so great that developers were faced
with creating sites for one browser or the other. Some attempted to write cross-
browser scripts, but doing so literally doubled the work of the developer. It was
easier to use animated GIFs movement and complex tables for approximating
absolute positioning.

It is definitely a complex task to implement custom DHTML cross-browser/
platform programming. If/Else conditional statements, however, make it
possible to write functions that will work on varying browsers/platforms.

NOTE

While the nonsense around DHTML was going on unresolved, developers and
designers discovered Macromedia Flash. Not only did Flash do what they wanted
as far as animation and absolute positioning was concerned, but it also did it at a
very low bandwidth and was cross-everything–compatible with the necessary
plug-in. Then both Microsoft and Netscape decided to embed the plug-in for Flash
into their browsers, so the concern about users not having the appropriate plug-in
was resolved. Instead of waiting for the two major browser developers to get
their acts together with DHTML, many turned to Flash. (See Chapter 18, “Flash
ActionScript and JavaScript,” for a discussion of JavaScript’s relationship to Flash.)
With Flash 5 ActionScripting being based on JavaScript, it is becoming much more
attractive to approach dynamic projects with Flash.

At the time of this writing, both Netscape Navigator and Internet Explorer were in
Version 6 of their respective browsers on Windows platforms, and NN6 and IE5 on
the Macintosh. While each still has its own way of positioning the contents of a
<DIV> container, some correspondence between the two is apparent in DHTML.

Cascading Style Sheets

One relatively stable feature of DHTML is CSS. In looking at the two browsers and
Windows and Macintosh operating systems, you find some differences, but not
many. This is especially true with IE6 and NN6. In this section, I want to go over
some of the more critical visual elements that are part of CSS. CSS has an aural
component that is not addressed in this book, as well as many other features that
make CSS an important designer’s tool. One highly regarded source is Cascading
Style Sheets 2.0 Programmer’s Reference, by Eric A. Meyer (Osborne, 2001).
Online, you cannot do better than the CSS2 standard, at
http://www.w3.org/TR/REC-CSS2/about.html. Here, though, you need to
understand something about the basics.

Standard Units of Measurement in CSS

The first feature—and one of the nicest—of CSS to be discussed is the units of
measurement in CSS. Those with a design background, especially page design,
are accustomed to working in a world in which measurement is in terms of pica,
leading, kerning points, and similar units not available in standard HTML.
However, with CSS, many of these familiar units of measurement are once again
available for making a page. Table 12.1 shows the units of measurement
available in HTML.

Table 12.1. CSS Standard Units of Measurement
Symbol Meaning
em Horizontal distance of the letter m relative to the point size of the current

font

ex Vertical height of the letter x relative to the current font

px 1 pixel unit on the computer monitor

in 1 inch

cm 1 centimeter

mm 1 millimeter

pt 1 point (1/72 inch, but actual size depends on monitor screen setting)

pc 1 pica is 12 points

% Percentage relative to another specified font size

Those without a page design background can find many books on page makeup
whose principles of page design readily apply to HTML. Because of both the
dynamic character of web pages, especially those with JavaScript, and the
differing sizes of screens, you must design for web pages with a slightly different
perspective. However, good page design for paper pages developed over the
years almost always applies to web pages as well.

More Than Pretty Fonts and Colors

To get started, I want to provide a point of departure and reference. This next
script has a little of everything in it and is shown on two different browsers (NN6
and IE6 on Windows) in Figure 12.1.

Figure 12.1. Only slight differences in the borders are
noticeable when CSS is used in either NN6 or IE6.

<html>
<head>
<title> CSS Potpourri </title>
<style type="text/css">
body {
 cursor:crosshair;
 background-color:ba3600;
 color:ebde33;
 font-weight:bold;
}
.test {
 border: groove;
 border-color:ab8f03;
 border-width:thick;
 position:absolute;
 left:300px;
 top:100px;
 text-transform:capitalize; //First letter of each word
capitalized

 font-family: verdana;
 background-color:ff4a00;
 color:white;
 margin-left:2em;
 text-indent:2em;
 text-align:center;
}
div {
 background-color:ab8f03;
 font-variant:small-caps;
}
</style>
</head>
<body>
<div>you know what i need

javaScript is just what i need

<p>And I need it Now</div>
</body>
</html>

Before going further, take a look at Figure 12.2 to see an approximation of what
the screen appears like in the different browsers in a Windows environment.

Figure 12.2. Using the <div> tag helps to provide an
integrated block of text.

If you look at the tags after the <body> tag in the script, you should notice that
all of the text and other tags are within the <div> container—this text line:

you know what i need

followed by

javaScript is just what i need

and, finally:

And I need it Now

The first feature that you should notice is that the second line is below the first
two. You might have expected the second line to be placed between the first and
the third, but it is not because the second line is part of a containing a
CSS class definition (.text) that uses absolute positioning. So, even though all
three lines of text are contained within the same <div> container, one of the lines
is marching to the beat of a different CSS definition and positioning definition.

Look at the text, how it is formatted, the letter case in the script and on the
screen, the different colors and their attendant relationship to the <div> or
 containers, and the border and positioning attributes. The script will
familiarize you with a cross-section of CSS. In the rest of the section, you will see
how to use the major visual elements of CSS. Also run the script on pre-V6
browsers to see what is formatted and what is not. Version 4 browsers
understand some of the CSS and not others.

 and <div> Elements

The element is used in HTML with CSS to create an inline style. That is,
only the materials within the container are affected, and the rest of the
paragraph is not. The container causes no carriage returns or other
breaks in the text. The <div> element, though, is a block element that will not
flow in a paragraph. The <div> container can be used for absolute positioning of
a block of text; within that block, other styles can be introduced using . In
the previous example, the inside the <div> container took precedence
over the <div> definitions but included them where they did not conflict. The
following simple script shows a block of text within a <div> container:

<html>
<head>
<title>Block Text </title>
<style type="text/css">
div {
 font-family:verdana;
 font-size:10pt;
 background:#ddd;
 margin:1em;
 text-align:center;
}
</style>
</head>
<body>
<div>
Wittenstein and Popper were at odds. Popper
demanded

empirically tested hypotheses and Wittenstein
 saw that both the
empirical
world and hypotheses
about that world were bound to language in
such
 a
way that the empirical world was nothing but talk
 about an idea
of an idea of
an empirical world.
 </div>
</body>
</html>

You will find creating blocks of text much easier using the <div> container than
several containers or user definitions. (You also might note that only
three hexadecimal values were used in the background color definition. That’s a

shortcut discussed further in the upcoming section “More on Colors.”) Figure 12.2
shows the formatted output.

Tags and User-Defined Styles

As you have seen in many examples, HTML tags can be redefined to change the
text and format characteristics using this format:

tag { attribute : value }

User-defined styles have two different formats. First, as you have seen, is the dot
definition with the following format:

.name { attribute : value }

Second, you can define an ID style that is similar to a dot definition, except that
it is prefaced by a pound (#) sign in the following format:

#name { attribute : value }

The only difference between the dot-defined style and the ID style, at the time of
this writing, is that you apply the former using the class keyword and the latter
using the ID keyword. In future developments of CSS, IDs are supposed to be
unique (used only once on a page), and class can be used as many times as
needed.

As has been seen in previous examples, the class keyword is used to select a
given user-defined style. For example, if a dot-defined style were .hiLite, the
class style selection would be this:

<p class=hiLite>...</p>

A selector defined by an ID (#) such as #loLite is applied using the ID keyword
in the tag where it is applied, as the following shows:

<p ID=loLite>....</p>

The following script shows all three at work:

<html>
<head>
<title>ID and Class Text </title>
<style type="text/css">
body {
 font-family:verdana;
 font-size:10pt;
 }
.hiLite {
 background-color:yellow;

 color:blue;
 font-weight:bold;
 }
#loLite {
 background-color:blue;
 color:yellow;
 font-weight:bold;
 }
</style>
</head>
<body>
Wittenstein and <span
ID=loLite>Popper never
resolved their differences. And neither
cared to.
</body>
</html>

Positioning in Three Dimensions

The absolute position properties in CSS include a location measured from the left
side (x), the top (y), and the stack position (z). Generally, the position is
measured in pixels (px), but you can use any of the legitimate units of
measurement you want. The x and y positions will run in the hundreds of pixels,
but the z position is relative to other <div> elements on the page. Like most
other units in HTML and JavaScript, the z parameter begins with 0 for the lowest
position on a stack of other <div> elements, to the highest number of <div>
elements on the page. For example, the following position definition would place
the objects in the <div> element about in the middle of an 800 × 600 pixel
screen at level 2 in a stack of other <div> elements:

div {
 absolute: position;
 top:400px;
 left:300px;
 z-index:2;
 }

You must use the <div> element to use absolute position. You can use ID or
class selectors to define a position; however, you then must place the selector
into a <div> container. The following script shows how to position and stack
layers using the absolute position keywords in CSS:

<html>
<head>
<title>Absolute Positioning</title>
<style type="text/css">
#top {
 background-color:rgb(130,146,20);
 color:black;
 font-weight:bold;
 font-size: 32pt;
 position: absolute;
 top:20px;
 left:20px;
 z-index:2;

 }
#middle {
 background-color:rgb(213,198,183);
 color:black;
 font-weight:bold;
 font-size: 32pt;
 position: absolute;
 top:50px;
 left:50px;
 z-index:1;
 }
#bottom {
 background-color:rgb(222,48,0);
 color:white;
 font-weight:bold;
 font-size: 32pt;
 position: absolute;
 top:80px;
 left:80px;
 z-index:0;
 }
</style>
</head>
<body>
<div id=top>At the top! </div>
<div id=middle>Caught in the middle! </div>
<div id=bottom>On the ground floor! </div>
</body>
</html>

You can also create a relative position. To have a relative position, you need
a current position as a point of reference. So, if a <div> element is at 100,200
and a relative position of 50,100 is declared, the element would be moved to the
position 150,300.

More on Colors

Up to this point, with a couple of exceptions in this chapter, I have used the six-
character hexadecimal value or word colors (such as lightseagreen and peru)
accepted by HTML to specify colors. However, CSS actually has four formats for
colors:

.myColor { color: #rgb }
.myColor { color: #rrggbb }
.myColor { color: rgb(r,g,b) }
.myColor { color: rgb(r%, g%, b%) }

The first method duplicates each of the values in the red, green, and blue value
slots. For example, this value:

#8ac

translates to

#88aacc

This technique can come in handy when adhering to a web-safe color palette. Any
six-digit hexadecimal value with the following pairs of numbers is considered
web-safe:

00 33 66 99 CC FF

Remembering 0, 3, 6, 9, C, and F is relatively easy; by stating a color as #39F,
you know that you will be getting #3399FF, a web-safe color.

The third method, rgb(d,d,d), shown in the script in the previous section, uses
decimal values instead of hexadecimal ones. Some web art tools (such as
Photoshop and Fireworks) use decimal RGB color values, and by copying those
values into the formula, you can match a color exactly. Also, some books on color
combinations show color values as RGB decimal ones. Leslie Cabarga’s book
Designer’s Guide to Global Color Combinations: 750 Color Formulas in CMYK and
RGB from Around the World (North Light Books, 2001) is a good example of a
resource that can be used with the rgb(d,d,d) format. For example, the
following color combination is from Tibet:

R G B Description
238 222 233 Light plum

210 121 78 Brown

153 158 129 Gray-green

0 0 Black

Using the colors from this palette, it is a simple manner to get the right values, as
shown in the following script:

<html>
<head>
<title> RGB Colors </title>
<style type="text/css">
body { background-color: rgb(238,222,233);}
#header {
 background-color:rgb(210,121,78);
 color: rbg(0,0,0);
 font-family:verdana;
 font-size:18px;
 font-weight:bold;
 text-align:center;
 font-weight:bold
}
#bText {
 background-color:rgb(153,158,129);
 font-family:verdana;
 font-size:11pt;
 color: rgb(238,222,233);
 text-indent:2em;
 }
</style>
</head>
<body>
<div ID=header>Peace and Wisdom</div><p>
<div ID=bText> <p> Tibet is a culture with a rich spiritual
tradition.
<p> Someday it will be free again.<p> </div>

</body>
</html>

Finally, the fourth method of expressing colors in JavaScript is using the
rgb(%,%,%) formula. Each of the values expects a percentage between 0 and 100.
For those wanting to ensure a web-safe palette, this method is the easiest. Any of
the following percentages in combination with one another is web-safe:

0% 20% 40% 60% 80% 100%

For example, having no clue what the following will present as a color, I know
that the color is web-safe because each of the values except 0 can be evenly
divided by 20:

rgb(80%,20%,60%)

Even if you do not require web-safe colors for your site, you will find that some
color sources express colors as percentages of RGB, and it can be an easier way
to envision the amount of red, green, and blue that you want in your “mixed”
color.

Borders

As a design element, borders are tricky calls. On one hand, borders represent one
of the worse aspects of amateur design in terms of isolating, separating, and
generally chopping up a page. On the other hand, if used judiciously, borders can
sometimes act as useful or even subtle frames to evoke the right kind of
attention to the information without calling attention to itself. CSS provides
several border styles, as shown in Table 12.2 Each style is a value of the border-
style property.

Table 12.2. Border Styles in CSS
Value Effect
none No border (my personal favorite).
hidden Relevant only for using collapsing border model and inhibiting other

borders. (Has precedence over all other styles.)
dotted Border made up of dotted lines.
dashed Border made up of dashed lines.
solid Single line (default) makes borders.
double Border made up of two solid lines.
groove Border appears as indent on page.
ridge Border appears to be raised from page.
inset Entire border appears as groove in separate borders model.
outset Entire border appears as ridge in separate borders model.

Besides border-style, you can set values for border-width, border-spacing,
and border-collapse. Both the width and spacing values are expressed in terms
of standard CSS units of measurement. The collapsing border model allows
designers to specify all or part of a cell, row, row group, column, and column
group. Borders can reference tables or independent blocks. The following script

shows how various characteristics of borders are used in combination with size
and color to create the table shown in Figure 12.3:

Figure 12.3. Fairly dramatic objects can be created at
very little bandwidth costs using the border elements in

CSS.

<html>
<head>
<title> Borders </title>
<style type="text/css">
table {
 border: outset 12pt rgb(182,31,0);
 border-collapse: separate;
 border-spacing: 12pt;
 }
TD {
 border: inset 7pt rgb(80,101,38);
 font-size:60pt;
 }
TD.midcell {
 border: inset 7pt rgb(255,209,0) //Yellow in the middle
 }
</style>
</head>
<body>
<center>
<table>
 <tr>
 <td>1
 <td>2
 <td>3
 </tr>
 <tr>
 <td>4
 <td class="midcell">5 //Expect the yellow border
 <td>6
 </tr>
 <tr>

 <td>7
 <td>8
 <td>9
 </tr>
</table>
</center>
</body>
</html>

Text Formatting

One of the most valuable and underused formats on a web page is the indent.
The elegant little notches in a stream of text serve to unify and separate. The
indented text serves to demarcate one paragraph from the next, but not so much
that the flow of ideas is divorced. The blocks of text that most pages contain have
gaps that act as fissures in thought, made even worse by the obnoxious
horizontal rule. Using CSS, putting in punctuation formats is simple. Table 12.3
shows the format for indents and various other text-related keywords.

Table 12.3. Text Formats in CSS
Format Effect

text-indent Indents first line of paragraph by measurement or percent
text-align Uses left, right center, or justify
text-
decoration

None, underline, overline, line-through, or blink

text-shadow None, color, length (comma-separated: right, vertical below,
blur radius)

text-transform Capitalize, uppercase, lowercase, or none
letter-spacing Normal, length
word-spacing Normal, length
margin Sets width for all margins
margin-top Sets width of top margin
margin-bottom Sets width of bottom margin
margin-left Sets width of left margin
margin-right Sets width of right margin

Cascading Style Sheets have more formatting options, and some, such as text-
shadow, are not yet fully implemented. However, using the other formatting
statements in CSS gives you control over your page’s appearance. Using “heavy”
margins, the following example places the body text beneath the header without
using any centering statements:

<html>
<head>
<title> Formats </title>
<style type="text/css">
#myBlock {
 margin-top:2em;
 margin-right:10em;
 margin-left:10em;
 text-align:left;

 text-indent:1em;
 text-transform:none;
 font-family: verdana;
 font-size:11pt;
 color: dimgray;
 font-weight:normal;
 }
#myHead {
 text-align:center;
 text-transform:capitalize;
 font-family: verdana;
 font-size:16pt;
 color: purple;
 font-weight:bold;
 }
</style>
</head>
<body bgcolor=lightyellow>
<div ID=myHead>
a humble suggestion </div>
<div ID=myBlock>
All paragraphs should be separated by indents. However, good page
design allows the
first paragraph after a header to be unindented, but as in this
example, you need
ot leave any paragraph without its notch.

<div style="text-indent:1em"> See how nicely indents provide a
smooth change without
separating the flow of ideas. Blocked paragraphs with no indents
appear
as fragmented ideas or a set of instructions, and while fine for
"how-to" pages,
they are not the best design format for the development of
concepts.</div>
</div>
</body>
</html>

One of the more difficult (and annoying) elements of the way CSS handles
paragraphs and indents is that it adds an extra space using the <p> tag. To place
a new paragraph without using the <p> tag, a
 tag is used along with a <div>
tag to define the indent. If a new <div> segment is set up and defined using the
user-defined word myBlock, all of the text is reset using the margins of the initial
<div> tag. In other words, it treats the material within the first <div> container
as a layer, and the margins are measured from the sides of the layers, not sides
of the screen. Figure 12.4 shows the output for the script.

Figure 12.4. With CSS formatting, you can get
paragraphs to look like paragraphs.

NOTE

The XHTML standard now requires that all tags be closed. One convention is to
use

 instead of <p>. This relates to “well-formed” pages that are
XML-or XHTML-compliant.

External CSS Style Sheets

When a CSS style sheet or a set of sheets for a web site is
developed and refined, you can save a great deal of time by
creating a CSS style sheet. As examples in previous chapters have
shown, several different web pages can use the same style sheet
saving time and bandwidth.

Follow this next set of steps to create an external CSS style sheet:

1. Write your styles as you would normally, except do not
include any HTML tags other than those in CSS definitions.

2. Save the file as a text file with .css extension.
3. In the <head> container of your HTML page, enter this tag:
4.

<link rel="stylesheet" href="URL.css">

That’s all there is to it. Design once; use often! The following two
scripts show an example of a style sheet and a page that uses the
sheet.

In the external sheet, note the absence of HTML tags to format the
page. You can redefine HTML tags all you want, but don’t use any in
creating the style sheet.

external.css

body {
 margin:1in;
 background-color:rgb(249,230,158);
 }
#banner {
 text-align:center;
 text-transform:capitalize;
 font-family: verdana;
 font-size:24pt;
 color: rgb(159,183,138);
 background-color:rgb(115,113,73);
 }
.hottext {
 margin:1em;
 color:black;
 background-color:rgb(255,17,0);
 text-align:center;
 font-family: palatino,times;
 font-size:12pt;
 }

All references to the following HTML page are in relationship to the
previous style sheet. Note the key CSS tag-connection line <link>.

external.html
<html>
<head>
<title> External </title>
<link rel=”stylesheet” href=”external.css”>
</head>
<body>
<div ID=”banner”>
this banner is from a far and mysterious place
</div>
<div class=”hottext”> <p>
This is just the kind of text I need for the whole site.
Thanks to my nifty
external style sheet, I don’t have to re-do this style
every time I crank up my
Notepad or SimpleText to create some wild and crazy
JavaScript that uses CSS.
<p> </p>
</div>
</body>
</html>

The bigger the site is, the more useful an external CSS file will be.
Any file can be linked to a .css file, and its styles can be
incorporated into your own site. (You can even tap into someone
else’s .css style sheet if you know the URL—only with the

permission from the author, though.) An external style sheet works
just like a web page as far as links are concerned.

The Role of JavaScript in Dynamic HTML

The most frustrating component of DHTML is the Tower of Babel that JavaScript
has become in relationship to DHTML. With the fourth generation of both
browsers, each (Netscape and Microsoft) uses a solution unique to its own
browser. However, with the sixth generation, Netscape seems to have changed
its mind about addressing CSS objects. So now, even if you go to all the work of
creating multiple scripts to address the different browsers, their own internal
consistency is suspect when it comes to JavaScript and CSS because the newer
versions of the browser might not be compatible with the older version.
Nevertheless, the future, while still the future, holds some promise of a merger.
In the area of CSS, both NN6+ and IE5+, including IE6, use a common method of
addressing IDs in CSS. The following section shows where this mutual point is
and gives some brief history of where IE and NN have come from.

Netscape’s Solution

With the advent of NN4, JavaScript’s relationship to CSS and DHTML in general
seemed to offer a clean solution to these new HTML objects. Basically, this format
could assign a value or read a CSS object:

document.tags(ID/class).tagElement.property=value;

All of the attributes in HTML had to be redefined for JavaScript. For example, this
line had to use the multicase word backgroundColor to replace background-
color in CSS:

document.tags.body.backgroundColor="green";

The following script, which will work in NN4 but not NN6 or IE, illustrates this
format:

<html>
<head>
<title> NN4 JS Style </title>
<style type="text/javascript">
 document.tags.body.backgroundColor="blue";
 document.tags.body.color="yellow";
 document.tags.body.fontSize="42pt";
 document.tags.body.fontFamily="verdana";
 document.tags.body.fontWeight="bold";
 document.tags.body.textAlign="center";
</style>
</head>
<body>
Big Bird Rules!
</body>
</html>

Unfortunately, the script not only is browser-specific, but it’s version-specific.

Microsoft’s Solution

Internet Explorer’s format is a bit different, and what works in IE4 also works in
IE6. This general format can be used to assign a value to a given element’s
property:

document.all.element.style.property="value";

For example, the CSS selector ID can be used to dynamically change an ID’s
value. For instance, this line changes all instances of text using the CSS ID
defined as myID to purple:

document.all.myID.style.color="purple";

Using JavaScript, you can change a lot more than just the color, as the following
script shows:

<html>
<head>
<title> IE4 JS Style </title>
<style type="text/css">
#myFont {
 font-family:verdana;
 color: lightseagreen;
 font-size:32pt;
 text-align:center;
 }
</style>
<script language="JavaScript">
function turnPink() {
 document.all.myFont.style.color="pink";
 document.all.myFont.style.fontFamily="times";
 document.all.myFont.style.fontStyle="italic";
 document.all.myFont.style.fontSize="60pt";
 }
</script>
</head>
<body bgColor="dimgray">
<div ID="myFont" >Color Me Pink!<div><p>
<form>
 <input type=button value="Turn Pink" onClick="turnPink();">
</form>
</body>
</html>

The New DOM Order

To play well together in the sandbox, NN6 and IE6 have adopted a far more
object-oriented DOM based on the W3C model. In many ways, the new DOM
resembles XML (see Chapter 17, “Working with XML and JavaScript”) and grows
out of attempts by W3C to better integrate XML, HTML, CSS, and JavaScript.
However, before donning party hats to celebrate the détente between the major
browser providers, be aware that some differences might still exist. In other

words, go slow on this new DOM until the full features of NN6 and IE6 come to
light, and keep in mind that most browsers are still Versions 4 and 5.

The new DOM is a bit more demanding about containers, especially <p> tags, and
for a good reason. Because the <p> tag can be used to select a CSS style, it
needs both a <p> tag and a </p> tag to demarcate when to begin and end the
selected style. More importantly, though, is that containers are a key type of
node to be addressed in HTML by JavaScript. Elements that have no ending tag,
such as
, or text on a page represent nodes as well. However, the containers
are the key nodes because they divide the script into child and parent nodes.
Parent nodes are containers that encompass another container node. Those
encompassed nodes are called child nodes. For example, in the following script,
you can see that the <body> node is inside the <html> node. Therefore,
references to the parent node point to <html> container and the <body> container
as the child node. The following HTML script shows an example of nodes with
comments:

<html> Parent of Body
 <body> Child of HTML and parent of Form
 <form> Child of Body and Parent of Input
 <input type=text> Child of Form and sibling of
Input
 <input type=button> Child of Form and sibling of
Input
 </form>
 </body>
</html>

You can see five nodes in this HTML script. They include three container nodes
and two independent nodes. The outermost tag is <html>, the parent of the
<body> element. In turn, <body> is the parent of the <form> element, and the
<form> element is the parent of the two <input> elements. The two <input>
elements are siblings to one another because they are encapsulated in the same
container, <form>.

One of the methods of the new W3C DOM is getElementById(), and it begins to
solve the mystery of why both classes and IDs are used in CSS. IDs have to be
unique to be of any use when referenced. Otherwise, JavaScript would not know
what part of a script is referenced when more than a single tag has the same ID;
classes, on the other hand, can be used as much as you want in a script because
they are not referenced by JavaScript using W3C DOM. The following script shows
a sample of what the newer browsers will be capable of doing—and, yes, the
script is cross-browser–compatible with IE5+/NN6+.

<html>
<head>
<title> The New DOM Order: NN6+/IE5+ </title>
<style type="text/css">
#brownOnBlack {
 font-family: verdana;
 color:peru;
 background-color:black;
 font-size:20;
 font-weight:bold;
 }

</style>
<script language="JavaScript">
function newDom() {
 var addTag=document.createElement("h1"); //Create new element
 var solution=document.createTextNode("The Brave New
DOM!");//New text
 addTag.appendChild(solution);//Put new text into new element
 document.body.appendChild(addTag);//Append the whole thing to
child
 }
</script>
</head>
<body bgColor="peru" >
<h1 ID="brownOnBlack">The Browsers are not getting along!</h1>
<form>
 <input type=button onClick="newDom()" value="What is the
Solution?">
</form>
</body>
</html>

The heart of the W3C DOM approach to DHTML is very different from its
predecessors. When you run the program, you will see the message “The Brave
New DOM!” plastered on your screen in the default <h1> style. If you’ve ever tried
to add text using document.write() to a page with existing text, you will have
found that it does not work. However, using this newer approach, you can make
all kinds of dynamic changes that (cross your fingers) will run just fine on the
new browsers from both Netscape and Microsoft.

To see how it works, you need to look at the JavaScript function line by line:

1. Because the program is going to add a new element, you need to create
that element. It does not exist in the HTML page. The element selected is
the <h1> tag, but you could have selected another element, such as <p> or
any other HTML tag that contains text to be added.

2.
var addTag=document.createElement("h1");

3. Next, you want to place the text for the newly created node into a variable.
This variable will be used to specify the text node that will be appended to
an existing node.

4.
var solution=document.createTextNode("The Brave New DOM!");

5. Now use the appendChild() method with the new element to identify the
new element and what it is to do.

6.
addTag.appendChild(solution);

7. Finally, you run down the hierarchy to pinpoint where you want to append
the new child node in the HTML script. Hence, you need to use
appendChild() a second time in the script. The top is <html> (document),
<body> (body), and, finally, the child of <body> where the new material is
placed.

8.
document.body.appendChild(addTag);

At the time of this writing, IE6 is still in its infancy, and NN6 is going through
growing pains as well. However, signs indicate that the future is very bright with
the adoption of W3C DOM standards by both major browser manufacturers. The
full integration brought about by having different elements of web scripting (XML,
HTML, CSS, and JavaScript) adhere to a common DOM will add immeasurable
value to JavaScript’s utility as a dynamic tool in the future.

Summary

Whatever else you take away from this chapter, just remember that Cascading
Style Sheets are the designer’s best friend. This is true for several reasons. First,
CSS provides the tools for designers to create pages that give the designer a
good deal of control. Unlike non-CSS design, which relies on using a convoluted
system of tables or using bandwidth-heavy graphics, CSS provides absolute
positioning and a wide assortment of style, color, and background options.
Second, CSS uses less bandwidth than scripts using graphics. Instead of relying
on graphics, even ones boiled down to very low file sizes, CSS is nothing but
cheap and light text instructions. Third, CSS is reusable. By employing external
style sheets, a whole design palette can be reused after initial development. For
real-world projects in which time is money, this feature alone sets CSS apart from
other design solutions.

At this point in time and, for the next couple of years, designers using DHTML and
JavaScript are going to have to either create multiple functions for cross-browser
compatibility or hang back until both browsers have at least Version 6 installed in
the bulk of the population. By adopting the Level 2 W3C DOM (and emerging
Level 3 DOM), both Netscape and Microsoft have shown signs of maturity,
optimistically pointing to a time when one design will be cross-platform– and
cross-browser–compatible. In the meantime, learn all you can about the W3C
DOM specifications at http://www.W3C.org. You will be glad you did as this new
DOM comes to represent a truly universal language of the web.

Chapter 13. Remember with Cookies

CONTENTS>>

• What Are Cookies and How Are They Used?
• Putting Cookies to Work
• Adding More Attributes
• Getting Information and Giving it Back

What Are Cookies and How Are They Used?

Think of cookies as llttle lumps of data stored on the viewer’s hard drive. Cookies
are stored as data files in ASCII format, except on Macintosh, where you have a
MagicCookie format. The text format precludes viruses being passed through
them, and yet cookies provide a convenient and useful way of passing
information about the user through the browser.

Cookies are used in a variety of ways. Usually, the designer wants the web page
viewer to feel welcomed and focused on those key elements of personal interest.
By examining the information on a cookie, the page can respond with the viewer’s
name and her personal favorites. For example, when I open my web portal page
that I use for searches and news, I am greeted with “Welcome Bill!” Then the

page shows all of the stocks, news stories, and other interests that I have. The
way the page knows who I am is by reading my cookie file.

If you are concerned about personal information being used in the wrong way, a
viewer can always delete his cookie file from his drive. If you have Windows OS,
just select Start, Search, For Files or Folders. You will find a folder named
COOKIES on your drive. You can throw every cookie or the entire folder in the
Recycle Bin, if you want to delete them. Alternatively, you can just toss those
cookies that you want removed. In my case, I don’t want my cookies from the
online bookstores deleted, so I keep them. On the other hand, I might have
looked at a page with advertising that I don’t want any more, so I can delete that
cookie. Figure 13.1 shows a typical cookie folder’s contents.

Figure 13.1. You can see the contents of all your cookies
in text files stored on your Windows PC.

On Macintoshes, use Sherlock to search for MagicCookie. When you find it, you
can look at the cookies using your word processor. Netscape stores your cookie
file inside the System folder and subfolders within, as shown in Figure 13.2 Be
careful if you make any changes to the MagicCookie file on your Mac using your
word processor. It’s easy to misalign the different cookies and mess up the ones
that you want to keep. If you want to view or delete cookies on your Mac or PC
using Netscape Navigator, open Edit, Preferences, Advanced, Cookies, View
Stored Cookies. You can scroll through your cookies and view or delete individual
ones. Using Internet Explorer, you can do the same thing by choosing Edit,
Preferences, Receiving Files, Cookies.

Figure 13.2. On the Macintosh, Netscape stores cookies
as MagicCookies.

Putting Cookies to Work

As far as JavaScript is concerned, cookies are document objects that can be used
to read data through the viewer’s browser and write data to the viewer’s drive.
When you open your browser, part of the document is a cookie; hence, this
format can be used to extract or set a cookie:

document.cookie

When a page is loaded, this line places the cookie in the variable varName:

var varName=document.cookie;

The general format for setting a cookie is this:

document.cookie=name=value;[expires];[path];[domain];[secure];

The cookie’s value is set as a name with a value. This format might be a little
confusing because of a double assignment of name and value. However, when
you get used to it, you can do some creative designs. The other attributes are
optional, and they are discussed further in this section.

Creating a Cookie

In its simplest format, creating a cookie provides a name for the cookie and a
value. For example, the following script sets a cookie with a name and a value:

<html>
<head>
<style>body {color:orangered} </style>
<script language="JavaScript">
document.cookie="sandlight=" + "Bill" + "*doughnuts";
</script>

</head>
<body>
<h1>The cookie is set! </h1>
</body>
</html>

The name used for the cookie is sandlight=, and I can look for that name later
when I read the cookie. The value set for the cookie follows the name assignment
after the equals sign. The value is a string, combined of “Bill” and
“*doughnuts”. As you might have surmised, the combined value is really two
values—the name (Bill) and something that this person likes (doughnuts).
However, the asterisk (*) needs some explaining. You cannot place spaces,
commas, or semicolons in cookie values. Because the value is a string, you can
put in multiple values by using a unique character to separate the different values
and then use JavaScript to sort things out. Alternatively, you can use the
escape() function to write data to a cookie and use unescape() to extract data
from a cookie.

When designing a site that uses cookies to store information about viewers (such
as customers or potential customers), JavaScript’s capability to work with sub-
strings comes in handy. By using substrings and delimiters, such as the asterisk
(*), you can add a good number of values to a single cookie. However, your
cookies need to stay within 4K for the name and value. So, while you can be
creative in their use, still keep names and values relatively small. Many designers
use numeric codes instead of descriptive strings. For example, in designing a site
for an online bakery, I might have 200 different bakery items. Instead of coding
the different items using names (such as bearclaws, muffins, and doughnuts), I
could have values from 000 to 199, each representing a different item. When a
cookie has been established, on the next visit, the customer would be presented
with the items he had previously indicated as favorites by referencing the coded
items.

Reading Cookies

Reading a cookie’s value is a matter of loading and parsing the cookie. With a
simple application, such as the one established for writing a cookie, the job is not
too daunting. The parsing work can be done with a substring() function. The
name, sandlight=, is 10 characters long (0–9), so the beginning of the value will
be at 10. Hence, the statement to extract just the value would be this:

substring(10,cookie.length);

For example, the following script will extract the contents of the cookie created
with the script in the previous section:

<html>
<head>
<style>body {color:orangered; font-size:24pt} </style>
<script language="JavaScript">
var myCookies=document.cookie;
var cookieVal=myCookies.substring(10,myCookies.length);
document.write(cookieVal);
</script>
</head>

<body>
</body>
</html>

When you launch the script in your browser, you will see the following on your
screen in a nice orange-red color in 24-point serif font:

However, life with cookies is never quite so simple. In this next section, the
discussion of optional attributes shows a bit more complexity in cookies.

Adding More Attributes

Cookies have the following four optional attributes:

• expires Cookie expiration date
• path Associated web pages
• domain Setting for multiple domains
• secure Boolean value for secure protocol

You can set some, all, or none of these attributes. Each attribute is placed in the
order of this list, separated by semicolons. No labels identify the attributes, so
you must remember the order and place dummy attributes if any are skipped.

Setting the Expiration Date

If expires is not set, your cookie is dropped at the end of the session; while it is
optional, a cookie that evaporates at the end of the session where it is set is of
little practical value. Therefore, most designers set the expiration date of cookies.
Some cookies have relatively short expiration periods, but I have seen cookies
set to expire in 20–30 years by optimistic designers.

Using JavaScript’s built-in date objects, setting the expires attribute is quite
simple. The date that goes into the actual cookie, though, must be in the
Date.toGMTString() format. For example, the following would set an expiration
date to the date specified:

var cookieGone=new Date("December 26, 2004");
document.cookie="sandlight=" + "TimeSample" + "; expires=" +
cookieGone.
toGMTSring();

Or, you can use a rougher setting, such as a couple of years:

var cookieGone=new Date();
cookieGone.setFullYear(cookieGone.getFullYear() + 2);
var adios=cookieGone.toGMTString();
document.cookie="sandlight=" + escape("Time Sample2") + "; expires="
+ adios;

The tricky part of setting the expiration is remembering that any label for the
expiration date goes into quotes, along with the separating semicolon. In the two
previous examples, look closely to how the expires= is encapsulated.

The Path

The best advice is to leave this setting alone. It automatically sets the path to the
directory in which the page that generates the cookie resides. In cases where you
want more than just those pages in the same directory to have access to a cookie,
you can specify another path, such as /customers, and all pages within
/customers will have access to the cookie. To open access to all web pages on the
server, use / as the path. The format is as follows:

; path=/mypath

The Domain

When you want to override the access to a cookie to more than the server on
which it is created, you can use the domain attribute. By specifying a domain
name, such as .sandlight.com, pages on any server in the .sandlight.com domain
can access the cookie. The path setting for this wide range of cookie access would
have to be set to /. The format is as follows:

; domain=.myDomain.xxx

Note that a leading dot accompanies the domain name. Unless you write the
entire URL beginning with http://, you need the leading dot.

Secure

If no secure setting is stated, the cookie is insecure. By typing the word secure,
you make the cookie secure. The format is as follows, with no added values:

; secure

Getting Information and Giving It Back

The trick in using cookies, of course, is to have the user provide information and
be able to get that information for use in the web page. Whether the information
is for a simple greeting whenever the viewer opens her page or is used to
configure the page being presented to the user, existing information must be
placed in the cookie. This next script is a relatively simple one that asks the
viewer for information that is stored in a cookie upon the press of a button. Then,
by pressing a second button, the viewer is presented with only the value stored in
the name attribute, but not the name itself or the date expiration information.
Therefore, pay close attention to the formatting used for configuring input and
output. (Remember that is simply an HTML nonbreaking space.)

<html>
<head>

<title>Read and Write Cookie</title>
<style type="text/css">
 body {
 background-color:rgb(200,198,159);
 font-family:verdana;font-size:11pt }
 #display {color:rgb(169,33,53); background-
color:rgb(249,225,203) }
</style>
<script language="Javascript">
function yourCookie(name) {
 var remain=new Date("November 9, 2005");
 document.cookie= escape(name + document.baker.myCookie.value +
"; expires=" +
 remain.toGMTString() + ";");
 }
function welcomeBack() {
 var seeMe= unescape(document.cookie);
 var tagIt=seeMe.indexOf(";");
 seeMe=seeMe.substring(11,tagIt);
 alert("Hello there, " + seeMe)
 }
</script>
</head>
<body onLoad="document.baker.reset()">
<div ID=display>
<form name="baker">
 <Input type=text Name="myCookie" >

 Type in the value for your cookie and click the button to set
the cookie

 <input type=button value="Bake Cookie"
 onclick="yourCookie('goodCookie=');"><p>
 Click the button to read the value of the cookie along with a
greeting.

 <input type=button value="See Cookie"
onclick="welcomeBack();">

</form>
 </div>
</body>
</html>

The two functions provide a round-trip ticket for cookies. The first function sets
the date and points the way to where the values can be found. This next line
expects a name included when the function is placed in a tag to be launched:

function yourCookie(name)

This line spells out where the information is to be found for the value (in the form)
and sets up the expiration date:

document.cookie= escape(name + document.baker.myCookie.value + ";
expires=" +
remain.toGMTString() + ";");

Because the value for name is coming from a form, you can expect user input for
the contents of the cookie.

The second function reads the cookie’s value only and then puts the substring
into a variable that is presented in an alert() function (see Figure 13.3). These
lines first pull all the data from the cookie in the initial line, using the unescape
function to decode it:

Figure 13.3. Users will generally be entering the valu es
for cookies, and that information can be used in future

visits to the site.

var seeMe= unescape(document.cookie);
var tagIt=seeMe.indexOf(";");
seeMe=seeMe.substring(11,tagIt);

Then, using the indexOf() method on the string containing the cookie, they
locate the position of the semicolon that separates the value from the expiration
date. Finally, the function looks for a substring beginning with the 12th character
(remember, the string index begins with 0, not 1) because the name is 11
characters long. So, the substring between where the name (goodCookie=) ends
and expires begins is the chunk of string where the value that you want can be
found. (If you use a name other than goodCookie=, you will have to include the
length of the name that you use as a starting point.)

Deleting Cookies

To delete a cookie, you need to provide it with an expiration date. It’s quite
simple because all you need to do is to set the same cookie name and then set an
expiration date. The end user can always get rid of cookies set on her hard drive
by throwing the cookie file into the Trash/Recycle Bin. A new cookie file is
automatically regenerated when the browser is restarted.

Summary

Cookies can be used creatively to personalize a web site for visitors. The cookie
information is not stored on a server, but rather on the user’s hard drive; it

represents the one thing that can be written to a user’s disk from client-side
scripts.

The designer’s goal with cookies is to create a personalized environment for the
user so that he will return to the site and keep using it. Cookies can be updated
for changes in the site or the user’s preferences. In the next several chapters,
you will see how to store user information using server-side scripts and databases
that are far more sophisticated and robust than cookies but that are used in a
very similar way to cookies.

Part III: JavaScript and Other
Applications and Languages

Part III JavaScript and Other Applications and Languages

14 Using PHP with JavaScript

15 Using ASP with JavaScript

16 CGI and Perl

17 Working with XML and JavaScript

18 Flash ActionScript and JavaScript

19 JavaScript and Other Languages

Chapter 14. Using PHP with JavaScript

CONTENTS>>

• The PHP4 Scripting Language
• Passing Data from JavaScript to PHP
• Controlling Multiple PHP Pages with JavaScript
• JavaScript Form Preprocessing For PHP
• Javascript, PHP, and MySQL

The PHP4 Scripting Language

For JavaScript users, PHP is an excellent transition language to server-side
scripting. Now in Version 4 (or PHP4), PHP is officially named PHP Hypertext
Preprocessor. The language was developed in 1994 by Rasmus Lerdorf as a
server language for his “Personal Home Page,” so he called it PHP. It is now a
program scripting language with many similarities to JavaScript, so you should
find it relatively simple to master.

PHP generally runs as a mix of HTML and PHP. PHP files are saved in the web
server’s root directory with the .php extension. The root directory varies with the
setup of your system. If you are using your hosting service account, put your files
into the root folder, and use your domain name as the root. (Do not put your PHP
files in a cgi-bin directory.) For example, if your domain is www.newriders.com,

and you save your PHP program in the root directory, you would enter this to call
a PHP program:

http://www.newriders.com/yourProgram.php

Most designers put in additional directories for different projects to keep
everything straight. For learning how to use JavaScript with PHP, you might want
to add a directory in your web server root directory named PHP and put all of
your PHP programs there. With the added directory, you would now enter this to
access your PHP file:

http://www.newriders.com/PHP/yourProgram.php

The addressing process is identical to that of HTML files, but you have to keep in
mind the relative relationship to the web server’s root directory.

PHP Container

Like JavaScript, PHP code must be written within a container. PHP has three
containers that you can choose from.

Container 1
<?php
script goes here
?>

Container 2
<?
script goes here
?>

Container 3
<script language="php">
script goes here
</script>

For this book, I will use Container 1. I like it because the beginning tag clarifies
the fact that the script is PHP without a great deal of extra effort. The other two
methods work fine, and, if you prefer, you can substitute one of them. (Note that
Container 3 looks a lot like a JavaScript container.)

Writing and Testing PHP Script

Use a text editor such as Notepad (Windows) or SimpleText (Macintosh) to write
your PHP scripts. If you use Notepad, when you save your file as a text file (text
document) with a .php extension, make sure that Notepad doesn’t add a .txt
extension in addition to your .php extension. Place quotation marks around the
name of your file when you save it, and Notepad will add no unwanted .txt
extension. To get started, write the following script:

<?php

phpinfo();
?>

Save the file as phpinfo.php in your server root directory or subdirectory. For this
example, I’ve saved my PHP file in a folder (directory) named PHP in my web
server’s root directory, www.newriders.com. To launch the program, I would type
this:

http://www.newriders.com/PHP/phpinfo.php

Substitute your domain name for www.newriders.com, and substitute your
directory name for PHP. If you’re using your computer as both a client and server,
you would type the following, making the appropriate substitutions for the
subdirectory name:

http://localhost/PHP/phpinfo.php

Figure 14.1 shows what you should see if everything is in the right place and is
installed correctly.

Figure 14.1. What you see with a successful test of
phpinfo.php.

If you see the page depicted in Figure 14.1 (or one close to it), you have correctly
accessed PHP in your web server.

Beginning Formats

In PHP, you will see the echo command frequently in use. The command works
something like a print command in Basic. The echo command takes the material
to the right of the command and displays it in a web page. Generally, the echo
command uses this format:

echo "Text, literals or variables.";

You can also use the echo command to show the output of functions, as in the
following:

$fruit="BANANAS";
echo strtolower($fruit);

The output would display bananas because the function changes all characters in
a string to lower case. Throughout the rest of this chapter, you will see the echo
command used often because it is the workhorse command to display information
to the user through web pages. However, the echo command can also be used to
send data back to the server. (The print statement is also used instead of echo,
and if you see a PHP listing with print, it is likely to be the developer’s
preference over using echo.)

Unlike JavaScript, PHP demands a semicolon at the end of most lines. If you
leave a semicolon out of certain PHP lines, the program will not execute. For
example, a simple variable definition like this one requires that the variable
declaration itself end with a semicolon at the end of the line:

<?php
$fruit="Kiwi Fruit";
?>

The semicolon is the instructor terminator for statements. However, as in
JavaScript, conditional statements never have semicolons after a curly brace. The
following shows where the semicolons go and do not go:

<?php
if ($price => $sale) {
 $newPrice = $price - ($price * .1);
 }
?>

PHP is very unforgiving when it comes to semicolons at the end of a command
line, so keep an eye out to make sure that your script contains the semicolons
that it needs. When debugging your script, first check to see if your semicolons
are where they belong. (Your practice of putting in semicolons in JavaScript
should really pay off here.)

Comments

As in JavaScript, comments in your code help you remember what you’re doing
with the code. I will be using the double forward slash (//), just like in JavaScript.
The following shows the correct use of comments in a PHP script:

<?php
$newName = $town . ", " . $state;
//The town and state are joined with a comma between them.
echo $newName;

?>

The comment line is another exception to the semicolon requirement. You can
write anything in a comment line because, as soon as the parser sees the two
slashes, it ignores the entire line. You might also see comments written over
several lines that begin with /* and end with */. For example, the following is a
multiple-line comment:

/* The following comments are made to help clarify how
multiple line comments can be made in a PHP script */

Escape Characters

You will find the escape characters in PHP identical to those in JavaScript. A
reverse slash (\) escapes the character’s usual function. For example, the
following shows how to include quotation marks in a variable:

<?php
$favoriteQuote = "Roosevelt said, /"There is nothing to fear but fear
itself./"";
echo $favoriteQuote;
?>

When the program is executed, the viewer sees the following on the screen:

Roosevelt said, "There is nothing to fear but fear itself."

Initially, the only character that you will have to remember to escape is the
double quotation mark ("). However, when preparing data for a MySQL database,
other characters need to be escaped, such as the single quotation mark (') and
the ampersand (&). PHP can handle either character without escaping them, but
the database cannot. PHP’s addslashes() function will help take care of the
problem by adding the needed slashes automatically when the PHP script is used
to add data to a MySQL database. Another function, stripslashes(), can then
be used to remove the slashes so that they won’t cause a parsing problem with
PHP.

Variables

Declaring a variable in PHP is not unlike doing so in JavaScript, except that all
variables in PHP are preceded by a dollar sign ($), and you don’t need the var
statement. The following script shows integers, floating-point numbers (doubles),
and string literals entered into PHP variables:

<?php
$enrollment = 25;
$itemCost=390.21;
$goodAdvice= "Remember Pearl Bailey.";
echo "<p>$enrollment";
echo "<p>$itemCost";
echo "<p>$goodAdvice";
?>

The output of the previous example follows:

25
390.21
Remember Pearl Bailey.

The <p> tag simply places an HTML paragraph between each variable output. For
the most part, when dealing with PHP and JavaScript, the formatting is
accomplished by placing the output in the appropriate variable. What is viewed on
the screen will depend on whether you are placing the output from PHP into a
variable that will be placed into a form or used in conjunction with
document.write() or some other statement that places variable information on
the screen.

Operators and Conditional Statements

Most of the operators in JavaScript and PHP are the same. Table 14.1 shows the
operators used in PHP.

Table 14.1. PHP Operators
Operator Use Format Example
= Assignment $inven =832;

+ Addition $total = $item + $tax + $shipping;

- Subtraction $discount = $regPrice - $salePrice;

* Multiplication $itemTotal = $item * $units;

/ Division $distrib = $all / $part;

. (dot) Concatenation $location = $city . ", " . $state;

% Modulus $remainder = 85 % 6;

== Equal to (compare) if ($quarter1 == $quarter2) {

=== Equal to + data type if($forest === $trees) {

!= Not equal to if (999 != $little) {

> Greater than if ($elephant > $mouse) {

< Less than if ($subTotal < 85) {

>= Greater than or equal to if ($counter >= 200) {

<= Less than or equal to if (300 <= $fullAmount) {

+= Compound assign add $total += 21;

-= Compound assign subtract $discount -= (.20 * $item);

.= Compound concatenation $areaCode .= $phone

&& Logical AND if ($first == 97 && $second <=

$third) {

|| Logical OR if ($high === 22 || $low == 12){

++ Increment (pre or post) for ($la=6; $la <=78; ++$la)

— Decrement (pre or post) for ($ls=50; $ls >=12; $ls—)

JavaScript concatenates strings using the plus (+) operator, and PHP4 uses the
dot (.) operator.

Conditional Statements

The conditional statements in PHP4 are very similar to those in JavaScript but are
not identical. PHP4 supports three different statements for branching a script.

The if Statement

PHP4 uses the if statement in the same way as JavaScript. When the condition
in parentheses is met, the program executes the next line. If the condition is not
met, the code in the next line is ignored. For example, the following code will
trigger the echo line:

<?php
$cost=55;
$retail=70;
if ($cost < $retail) {
 echo "You can make a profit.";
 }
?>

The else Statement

When you have an alternative to the conditional statement using else, the else
clause is initiated automatically when the if condition is not met. The following
script shows how this works:

<?php
$designTime=88;
$payment=5500;
if ($payment>5000 && $designTime<80) {
 echo "Take the job";
 } else {
 echo "The schedule is too long.";
 }
?>

Note in the previous script how the logical AND (&&) operator is used in the script.
Both PHP4 and JavaScript use the logical operators the same way.

The elseif Statement

The formatting of elseif in PHP4 and JavaScript is slightly different. PHP4 uses
the single term, elseif, while JavaScript uses else if as two words. However,
the rest of the formatting is similar. The following example illustrates how an
elseif statement is set up in PHP4:

<?php
$designTime=88;
$payment=5500;
if ($payment>5000 && $designTime<80) {
 echo "Take the job";
 }

elseif ($payment>6000 || $designTime<90) {
echo "This deal will work";
}else {
 echo "We just cannot make this work";
}
?>

When using elseif statements, remember that you need an if statement before
beginning a series of elseif statements, and you need an else statement after
the last elseif statement, just like in JavaScript. Conditionals are the decision
makers in PHP, as in JavaScript, and when creating a dynamic site, the data from
the JavaScript in the HTML front end often must be analyzed in a PHP script.

Loops

PHP has three types of loops, and they are structured very similarly to JavaScript
loops.

for Loop

A beginning value, a termination condition, and the counter (index) control the
for loop. Increments and decrements in the index counter can come before or
after the index variable. If the increments/decrements are before the index
variable, the change occurs before the counter is employed, while increments/
decrements after the index variable generate change after the going though the
loop.

<?php
for ($counter=0; $counter <100; ++$counter) {
 echo $unit . $counter;
}
?>

while Loop

A statement at the beginning of the while loop stipulates the conditions under
which the loop terminates. All loop actions take place between the curly braces
and include an incremental or decremental variable.

<?php
$counter=100;
while ($counter >1) {
echo $unit . $counter . "
";
//$unit is a variable passed from HTML page using JavaScript$counter–;
}
?>

do...while Loop

Because the counter is at the bottom of the do...while loop, the loop must be
processed at least once. The while loop can be terminated before any statement
is executed.

<?php
$counter=12;
do {
echo $unit . $counter . "
";
//$unit is a variable passed from HTML page using JavaScript$counter—;
} while ($counter >1);
?>

Arrays

Arrays work the same in both JavaScript and PHP, and the differences are minor.
You will find arrays an important PHP tool to use when pulling data from a
database and passing the information to JavaScript. Note the differences between
array construction in JavaScript and PHP as well as the several ways that arrays
are constructed in PHP:

<?php
$book[0] = "The Odyssey";
$book[1] = "The Iliad";
$book[2] = "The Republic";
$book[3] = "Philosophical Investigations";
$book[4] = "Heaving Romances!";
?>

Like arrays in other scripting and programming languages, the initial element is
the 0 element, and not 1. If you list array elements with only the brackets and no
numbers, PHP automatically assigns each element based on order of assignment,
beginning with 0.

You can also use the array constructor to build an array. It works very much like
JavaScript’s constructor. For example, the following is an array of fruit:

<?php
$fruits = array ("peach", "apple", "plum", "orange");
?>

In referencing the array elements, the first value in the array is a peach and is
assigned an element identifier of 0. The others are assigned element numbers
sequentially so that orange would be element 3. The following script shows the
peach and the plum:

<?php
echo $fruits[0];
echo $fruits[2];
?>

An excellent array feature of PHP is the capability to set the index. A special array
operator, =>, sets the sequence. For example, if you want your $fruits array to
begin with 1 instead of 0, you could write this:

<?php
$fruits = array (1 => "peach", "apple", "plum", "orange");

?>

Now peach is 1, apple is 2, plum is 3, and orange is 4. In addition to renumbering,
the => operator can be used to create string-indexed arrays. Sometimes your
program will make more sense if you use string identifiers. For instance, an array
of officers in an organization might use the position initials to identify each one:

<?php
$AcmeOfficers = array ("COB" => "Ralph Smith", "CEO" => "Carolyn
Jones", "CFO" =>
"Marilyn Kanter", "CIO" => "Hillman Tech", "VPO" => "George Ready");
echo $AcmeOfficers[CIO];
?>

In the example, the echo statement returns Hillman Tech because the string
index CIO has been associated with the string literal Hillman Tech in the array.
Note that the array index identifier has no quotation marks around it in the line
with the echo statement.

Searching for Data with an Array

If you want to find a single element in an array, use a loop. When data are placed
into an array using numbered elements, all you need is a loop and a counter, as
the following example shows:

<?php
$parts=array("nuts" ,"bolts" ,"screws" ,"washers", "wingnuts");
while ($find != "screws") {
 $find = $parts[$counter];
 $counter += 1;
 }
echo $find;
?>

Looping through data from a database such as MySQL uses a similar process. If
the data from the database is placed into an array, you will find it easy to get
what you need using a loop. Often, you can use the same loop concept in a table
to create a “built-in” array.

PHP Functions

PHP has built-in functions and user functions, just like JavaScript. Likewise, a
number of other functions are built into PHP, and you can find them in the online
manual at http://www.php.net. Building your own functions works like JavaScript
user functions. For example, the following function brings a first and a last name
together:

<?php
function fullName ($lastName,$firstName) {
 return $firstName . " " . $lastName;
}
echo fullName("Langley", "Harry");
?>

At this point, you know enough PHP that you can begin doing something with it in
relationship to JavaScript. As you will see, most of the work done by JavaScript is
limited, but you can effectively use JavaScript with forms to serve as a data-
confirmation tool before sending the data to a PHP script.

Passing Data from JavaScript to PHP

In the role of a confirmation tool, JavaScript can check the content of forms
before data is sent to a PHP script. Such a role is important for real-world forms
because, if troublesome data are sent to a PHP script, the wrong data could end
up in your database.

PHP recognizes data from an HTML form element using the same naming
structure, but with the added dollar sign before the variable name. For example,
if a form element is named this:

alpha

in an HTML page, it will be recognized as this in a PHP script:

$alpha

To see one role of JavaScript in gathering in information, these next two scripts,
one an HTML page and the other a PHP script, show how data can originate in

JavaScript and be passed to PHP. First, the JavaScript function simply loads up a
hidden form with a value. Note that the JavaScript variable greet is placed into a
hidden form named alpha. The variable that is passed to the PHP script is alpha
because PHP is getting its variable from a form named alpha. Thus, JavaScript
makes a “bank-shot” to the form and then to PHP rather than directly to the PHP
script.

getData.html
<html>
<head>
<title>Sending Data to PHP </title>
<script language="JavaScript">
function loadIt() {
 var greet="Hello from PHP.";
 document.storage.alpha.value=greet;
 }
</script>
</head>
<body onload="loadIt()";>
<form name="storage" method=get action="greetings.php":>
 <input type=hidden name="alpha" >
 <input type=submit>
</form>
</body>
</html>

Save this script as getData.html. It uses the get method to open a PHP page
named greetings.php. The PHP page immediately echoes whatever is in a variable
named $alpha. As you will see, because $alpha is not declared or defined on the

PHP page, its content could be only what has been passed to it from the HTML
page. Save the following page as greetings.php, and put it in the root directory or
subdirectory in your root directory along with the getData.html page.

greetings.php
<html>
<body>
<?php
echo $alpha;
?>
</body>
</html>

When you run the getData.html script, press the Submit button to launch the PHP
script. Your screen shows the line, “Hello from PHP.”

Controlling Multiple PHP Pages with JavaScript

One use of JavaScript is to serve as a controller for PHP pages appearing in an
HTML environment. Because PHP replaces a page that it is called from, one plan
of action is to use JavaScript to create a number of buttons used to launch
different PHP pages within a frameset. JavaScript can reside in the menu page,
and PHP is called in the body page of a two-column frameset. At the same time,
both the JavaScript page and the PHP page share a common external style sheet.
Seven scripts are required for this project: an external CSS file, a frameset page,
the menu page using JavaScript, a placeholder page, and three PHP pages
demonstrating different features of PHP.

Cascading Style Sheet

Using a color scheme from The Designer’s Guide to Color Combinations by Leslie
Cabarga (North Light Books, 1999), the first step is to create a palette using the
following colors. (All values are in hexadecimal.)

Color A FFE699 Light tan

Color B CC994C Tan

Color C CC0019 Deep red

Color D 00804C Dark green

Color E 808080 Gray

Color F 000000 Black

This particular color scheme was selected because it contains black and gray, the
colors of the buttons in HTML forms. The following style sheet incorporates the
colors used in both the PHP and HTML pages.

controller.css
.bigRed {
 color: #cc0019;
 background-color: #ffe699;
 font-family: verdana;
 font-weight: bold;
 font-size: 18pt;
 }

.midRed {
color: #ffe699;
background-color: #cc0019;
font-family: verdana;
font-weight:bold;
font-size: 14pt;
}

Save the CSS style sheet in the same directory as the files for the HTML and PHP
pages. All of the pages will employ the same style sheet.

This next HTML page establishes the frameset where the initial HTML pages—and
eventually the PHP pages—will go.

controlSet.html
<html>
<frameset cols="25%,*" border=0>
 <frame name="menu" src="jMenu.html" frameborder=0 scrolling=0>
 <frame name="display" src="jsD.html" frameborder=0 scrolling=0>
</frameset>
</html>

The left side of the frameset opens with a menu page and a blank HTML page in
the right frame. All of the JavaScript controllers are in the menu. A simple
function in JavaScript is used to launch any of the PHP pages in the right frame.

jMenu.html
<html>
<head>
<link rel="stylesheet" href="controller.css" type="text/css">
<script language="JavaScript">
 function loadPHP(url) {
 parent.display.location.href=url;
 }
</script>
</head>
<body bgcolor=#00804c>
<table border=0 height=70%>
 <tr align=left valign=top>
 <td bgcolor="#808080">
 <center>
 <div class="bigRed"> Menu </div>
 </center>

 <form><input type=button onClick="loadPHP('alpha.php')"
value="Selection 1">
 <p><input type=button onClick="loadPHP('beta.php')"
value="Selection 2">
 <p><input type=button onClick="loadPHP('gamma.php')"
value="Selection 3">
 </td>
 </tr>
</table>
</body>
</html>

The initial page in the right frame is a “dummy” page used to occupy space until
one of the PHP pages is launched. Figure 14.2 shows how the initial page appears
when the frameset is loaded.

Figure 14.2. The area on the right is reserved for PHP by
an initial placeholder page.

jsD.html
<html>
<head> <title>Display Page</title>
<link rel="stylesheet" href="controller.css" type="text/css">
</head>
<body bgcolor=#cc994c>
 <div class=midRed> PHP Pages Appear Here </div>
</body>
</html>

The first PHP page simply displays a message in plain text. However, it does load
the same style sheet as the two previous HTML pages.

alpha.php
<html>
<head> <title>Control Menu</title>
<link rel="stylesheet" href="controller.css" type="text/css">
</head>
<body bgcolor=#808080>
<center>
<?php
 echo "This is plain text.";
?>
</center>
</body>
</html>

The second PHP page responds with a text message using one of the style sheet
classes (see Figure 14.3).

Figure 14.3. A PHP page using the same CSS style sheet
as the HTML page appears in the right column.

beta.php
<html>
<head> <title>Control Menu</title>
<link rel="stylesheet" href="controller.css" type="text/css">
</head>
<body bgcolor=#808080>
<center>
<?php
 echo "<div class=midRed> Here’s the other CSS class
</div>";
?>
</center>
</body>
</html>

The third PHP page, like the second, responds with a message that indicates yet
another of the CSS classes has been employed.

gamma.php
<html>
<head> <title>Control Menu</title>
<link rel="stylesheet" href="controller.css" type="text/css">
</head>
<body bgcolor=#808080>
<center>
<?php
 echo "<div class=bigRed> CSS Text like the Menu </div>";
?>
</center>
</body>
</html>

The role of JavaScript is to show how PHP pages can be controlled with a
JavaScript function and how a common CSS file can provide a common style to

front-end and back-end elements of a web site. In the next several sections, you
will see how to check and send data from an HTML page to a PHP page using
JavaScript for data verification.

JavaScript Form Preprocessing for PHP

Now that the concept of JavaScript’s role with PHP is clear, it is time to do
something more practical with JavaScript and PHP. This next set of scripts uses
JavaScript as a preprocessor to make sure that a comment form being sent has
all of the forms filled out and that the user remembers to include an “@” sign in
her email address. The JavaScript also shows how to combine two functions into a
single function that performs two tasks.

Before starting, you need to know a PHP function not yet discussed. The function
mail(e,s,m,h) has four arguments:

• e Email address
• s Subject
• m Message
• h Header

Each of the arguments can be set as variables or strings in quotation marks. For
example, this line would fire off an email to joe@fuzz.com with the other
variables’ contents going into the subject window, delivering a message, and
creating a header:

mail("joe@fuzz.com",$subject,$talk,$whoMe);

To get started, I selected a French color scheme from Leslie Cabarga’s
international set of colors in The Designer’s Guide to Global Color Combinations
(North Light Books, 2001).

Color A b3cfcc Gray

Color B 6e9282 Gray-green

Color C cc0019 Deep red

Color D f2ede0 Cream

Color E a44c3a Terra cotta

Color F 000000 Black

In selecting the colors, I wanted to include a gray and black so that the color
scheme would not clash with the form buttons.

mailer.css
.labelText {
font-family: verdana;
font-size:11pt;
font-weight:bold;
color:#6e9282;
}
.headerText {
font-family: verdana;
font-size:18pt;

color:#c0baae;
font-weight:bolder;
background-color:#a44c3a;
}
body {
background-color:#f2ede0;
}

When you have your style sheet created and stored out of the way, you are ready
for the main JavaScript page. The following script checks what a user has placed
into a form; if a problem is found, an alert message informs the user.

mailForm.html
<html>
<head>
<link rel="stylesheet" href="mailer.css" type="text/css">
<Title>Mail Form</title>
<script language="JavaScript">
//See if any of the document form elements are blank.
function checkBlank() {
 var flag=0;
 var count;
 for (count=0;count<3;count++) {
 if (document.mailme.elements[count].value=="") {
 flag=1;
 }
 }
 if (flag==1) {
 alert("Please fill all the forms.");
 }
}
//Make sure the @ is in the email address.
function checkAt() {
 var correct=0;
 var seek;
 var alpha=document.mailme.email.value;
 var ampFind=new String(alpha);
 var beta=ampFind.length;
 for (seek=0;seek<beta;seek++) {
 if(ampFind.charAt(seek)=="@") {
 var correct=1;
 }
 }
 if (correct==0) {
 alert("The @ is missing from your email address.");
 }
}
//Put the two functions together.
function checkAll() {
 checkBlank();
 checkAt();
}
</script>
</head>
<body>
<center>
<div class=headerText>
Mail Form
</div>
</center>

<div class=labelText>
<form name="mailme" method =get action="mailer.php">
Please enter your name:
<input type="text" name="name" size=24><p>
Please enter your email address:
<input type ="text" name="email" size=40><p>
We’d like to hear what you have to say:

<textarea name="comments" rows=10 cols=80></textarea><P>
<input type="button" value="Click to Verify:" onClick="checkAll()">
<input type="submit">
</form>
</div>
</body>
</html>

What’s Going On?

The script is a bit long, but it is really quite simple. The first function,
checkBlank() sets up a loop that examines the first three elements of the
mailme form. (The other elements of the form are buttons and have no input
data.) checkBlank() looks for the empty quotations (""), and if it finds any, it
sets a flag variable named flag. The second function, checkAt() examines what
the user wrote into the email window to make sure that the @ is in place. To do
this, the script first placed the contents of the form into a variable named alpha:

var alpha=document.mailme.email.value;

That variable is then made into a string object in the variable ampFind so that all
of the string functions can be used to find the length of the email address and
check each character to see if it contains an @ character. If it does, a flag
variable named correct is set. In this case, the alert message is sent only if the
flag variable is not set.

The last bit of JavaScript combines both forms so that a single click will check for
both types of errors. If an error is detected, a warning appears, as shown in
Figure 14.4.

Figure 14.4. The JavaScript detects a mistake and sends
an alert message to the viewer.

When the viewer sees the error message, she has an opportunity to correct it
before submitting the data to a PHP script. Figure 14.5 shows how the corrected
page appears before submitting it.

Figure 14.5. When the problem is solved, no error
messages appear on the screen and the user may press

the Submit Query button.

mailer.php
<html>
<head>
<link rel="stylesheet" href="mailer.css" type="text/css">
</head>
<body>
<?php
$recipient=$email;
$reply="Dear " . $name . ", \n\n";

$reply .= "Your information has been received. Thank you for filling
out the form.";
$reply .= " We will have someone go over comments ";
$reply .= "and get back to you by email soon.";
$reply .= "\n\nSincerely, \nSuzy Q. Less \nPublic Relations";
mail($recipient, "Your Comments",$reply);
$bundle=$comments . "\n\n": . $name . "\n\n" . $email;
mail("yourCompany@email.com","Customer",$bundle);
?>
<p class=headerText>
<?php echo " Thank you, " .$name; ?>
</p>
<p class=labelText>
<?php echo "You will hear from us very soon."; ?>
</p>
</body>
</html>

What’s Going On?

All three of the data-entry form elements in the HTML page are passed to the PHP
page. The form elements name, email, and comments are received by PHP as
$name, $email, and $comments. These are then used in the PHP script to form a
reply, address an email, and pass information to the owner of the web site. Hence,
you will see two instances of the mail() function. The first sends an email to the
person who filled out the forms, and the second sends one to the owner of the
web site. Figure 14.6 shows the immediate response that the user sees when he
submits the form.

Figure 14.6. A reply on the screen indicates that the
information has been sent.

Also note how the PHP code is interspersed with the HTML tags. It is extremely
important to remember to put in the semicolons after each PHP line, where
appropriate. The same information that is used in the email reply is used to place
a message on the screen as soon as the data is submitted. The person who clicks
the Submit Query button not only gets a reply immediately on the browser that

he’s viewing, as shown in Figure 14.6, but he also gets an immediate email
signed by a public relations representative, shown in Figure 14.7.

Figure 14.7. An immediate email is sent to the viewer.

The web site owner gets all of the information sent by the viewer. It’s a
barebones letter with the name, email, and comment variables displayed as a
message, as shown in Figure 14.8.

Figure 14.8. The email with the viewer’s information is
sent to an email address determined by the site owner.

JavaScript, PHP, and MySQL

With JavaScript’s capability to check data before it is sent to a PHP script, it
serves a valuable role in making sure that data sent from an HTML page are the

data that you want in a database. When the data are in the database, you can
recall them using HTML aided by JavaScript as a front end.

An open source relational database-management system (RDBMS) typically used
with PHP is MySQL. MySQL can be downloaded and used for professional
database development. While you can use it without charge for learning and most
personal uses, a small fee is required for commercial uses. The current version as
I write this page is 3.23.37, and you can be assured that it will be upgraded by
the time you read this passage. Check http://www.mysql.com for the latest
version.

Fundamental MySQL Commands

One way to learn and practice the basic MySQL commands is to put the MySQL
sever on your computer. Download the version of MySQL for your operating
system from http://www.mysql.com, install it following the installation prompts,
and you should be all set to start creating databases and tables in MySQL.

Use the following steps if you’re running everything on your Windows PC for the
initial setup:

1. Select Start, Programs, Accessories, MS-DOS Prompt to open a DOS
window.

2. In the DOS window, type cd c:\mysql\bin\ and press Enter. You will see
the DOS window with white type and a black background.

3. Type mysqld --standalone and press Enter. (Be sure that you have a
space between mysqld and --).

4. Enter the MySQL monitor by typing mysql and pressing Enter. If you’ve
successfully entered the monitor, you will see a mysql> prompt. All
commands in the MySQL monitor must be terminated with a semicolon.

5. (See Figure 14.9.)

Figure 14.9. From the MySQL monitor, you can
enter MySQL commands.

6. This next step creates a new database user, and you need to do it just
right. Look at Figure 14.9, and type in the same code, pressing the Enter
key at the end of each line.

7. Once you have inserted the user, exit the MySQL monitor by typing exit.
You should see the C:\mysql\bin> cursor. Now just type in mysql and
press Enter.

Making Your Own Databases and Tables

When you are in the MySQL monitor, you should be able to create databases and
tables and add records to the tables. To create a database, type in the following:

mysql> CREATE DATABASE javastore;

The name of the database just created is javastore, and it is seen by issuing a
SHOW DATABASES command (see Figure 14.10).

Figure 14.10. All of the databases in MySQL are
displayed, including the one just created.

The command displays all the databases established. The databases named mysql
and test are established by default. The database javastore is the one just
created. Creating new databases with MySQL is quite simple.

To add a table to the database, first issue a USE javastore; command to select
the desired database. Next you will create a table that contains all the fields that
you will need for a name and address database. You will need the following nine
fields:

• Identity number
• Last name
• First name
• Address
• City
• State
• ZIP code
• Phone
• Email

The purpose is to create a table to show the email addresses of a list of people
stored in the database. Each field must include a name, a data type, and the

length of the field for fixed length types. Table 14.2 lists a sample of some of the
data types in MySQL.

Table 14.2. MySQL Column (Field) Types of Data
Data Type Description

INT(n) Integer number
FLOAT Floating point (single precision)
DOUBLE Floating point (double precision)
DECIMAL(n,dp) Float stored as string
CHAR(n) Fixed-length string from 0 to 255
VARCHAR(n) Variable-length string from 0 to 255
TEXT Text field from 0 to 65535 bytes

Create a table using the following format:

mysql> CREATE TABLE tabldogname (field1 DATATYPE(N),
 field2 DATATYPE(N)
, etc.);

Because the table used in this example has nine fields, you will need nine unique
field names. Other than the first field that will be an integer number (INT) and
the state and ZIP code fields that will be fixed-length strings (CHAR), the values
will all be variable-length strings (VARCHAR).

To create the table and all of its fields, be sure that javastore (USE javastore) is
the selected database, and enter the following in the MySQL monitor:

mysql> CREATE TABLE clientlist (
 -> id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 -> lname VARCHAR(20),
 -> fname VARCHAR(20),
 -> address VARCHAR(40),
 -> city VARCHAR(30),
 -> state CHAR(2),
 -> zip CHAR(5),
 -> phone VARCHAR(15),
 -> email VARCHAR(35)
 ->);

After you press the Enter key after the last semicolon, you should see the
following:

 Query OK, 0 rows affected (0.00 sec)
 mysql>

If you get any kind of error, your table will not be created. To check whether your
table is actually formed, type in the command SHOW TABLES . The following shows
the sequence:

mysql> SHOW TABLES;
+-------------------------+
| Tables_in_javastore |
+-------------------------+
| clientlist |
+-------------------------+
1 row in set (0.00 sec)

To check all the fields in your table, enter the command EXPLAIN clientlist
and press Enter. Figure 14.11 shows what you will see if you have entered your
data correctly.

Figure 14.11. All of the fields in the database are
displayed.

Entering and Retrieving Records

After you have created a database and table, to make it useful you need a way to
enter and retrieve records. To insert records into a table, first be sure that the
correct database is selected and then use the following format to enter records:

mysql> INSERT INTO tabldogname VALUES('field1', 'field2');

The data that makes up field1 and field2 originates in the HTML page, is
checked with JavaScript, and then is sent to a PHP file. So, besides entering the
data as literals, variables passed from JavaScript/HTML to PHP to MySQL can be
used for entering data into MySQL as well. Moreover, you will find doing so much
easier than using the MySQL monitor. The following code shows the correct
procedure for entering a record and the feedback from the MySQL monitor:

mysql> INSERT INTO clientlist VALUES(
 -> null,
 -> 'Smith',
 -> 'Joe',
 -> '123 Maple Street',
 -> 'Taft',
 -> 'CA',
 -> '92012',
 -> '619-555-4502',
 -> 'josm@hubahuba.com'

 ->);
Query OK, 1 row affected (0.05 sec)

mysql (prompt on screen)

The important value entry is the null in the first field. No matter what record you
are entering, when you put in null in an AUTO_INCREMENT field, the value for that
record is increased by 1. This automatic value in a primary key means that you
don’t have to keep track of the unique value that each record will have. So, if you
have two people named Joe Smith, each will have a unique number in his id field
to distinguish him. Also, when using more than one table in a database, the id
field will keep your data in the proper relationship. So, if you have all the names
in one table and other information about the same person in another, the
common id field with AUTO_INCREMENT will help keep your records straight.

To see the record that you put in, you can specify different characteristics of the
record. To see all of the fields and all of the records, use the asterisk (*) as a
wildcard character. For example, to see all of the records in your table, you would
type this:

SELECT * FROM clientlist;

Figure 14.12 shows what you would see given the information entered in the
example.

Figure 14.12. All of the fields and their values are
displayed using the wildcard character.

You can also select just portions of the table in any order your want. For example,
you could enter this, and you would get only the selected fields in the order that
you listed them:

SELECT id,fname,lname,state FROM clientlist;

Figure 14.13 shows the outcome from the previous command.

Figure 14.13. Only the selected fields are displayed in
the order specified in the command.

A third SELECTION command allows you to select both a field and a field value.
For example, if you wanted to find a phone number in which the person’s first
name was Joe, you could enter this:

SELECT phone FROM clientlist WHERE fname="Joe";

Experimenting with different MySQL commands helps you understand the PHP
commands that put data into and pull data out of a MySQL database. The data
originates in an HTML page and is checked by a JavaScript verification routine.
Next, the HTML data is sent to a PHP page, where the variables are used to put
information into the database or take it out.

PHP and MySQL

PHP contains a number of functions designed to communicate with a MySQL
database. A full list of PHP commands associated with MySQL can be found at
http://www.php.net/manual/ref.mysql.php, but for the purposes of this
introduction, you will need only a few of the PHP-MySQL functions. Table 14.3
lists the ones used in this chapter.

Table 14.3. PHP MySQL Functions
Function Result

mysql_connect Establishes a connection to a MySQL server
mysql_query Send a MySQL query
mysql_result Gets result data
mysql_num_rows Returns the number of rows in result
mysql_select_db Chooses a MySQL database

PHP Connection to MySQL

The first MySQL function in PHP to learn is mysql_connect(). As you can guess
from the name, the function establishes a connection between PHP and the
database. To make the connection, the mysql_connect() function requires three
arguments: server, user, and password. By placing the names of the server,
user, and password into variables, it is easier to make sure that you have the
names right and also to change the server, user, or password.

PHP uses the die() function to find out whether a connection is made. So, the or
die (message) function is often used to help locate connection problems to the
different links that must be made to MySQL. Use the following PHP script to test
your connection:

<HTML>
<head>
<Title>Test MySQL Connection</title>
</head>
<body bgcolor="orangered">
<center>
<h1>
<?php

$server="localhost";
$user="hotcoder";
$pass="javascript";
$connectMy=mysql_connect($server,$user,$pass) or die("No connection
made.");
if ($connectMy) {
$reply="Connection confirmed.";
}
echo "$reply";
?>
</h1>
</center>
</body>
</html>

Save the script in the root directory of your server, or a directory within the root
directory, as connectTest.php. I added a subdirectory to my root directory to
keep everything clear:

http://localhost/jsphp/connectTest.php

The server name localhost is one that I used on my computer serving as host and
client. On a professional hosting service, you would use your domain name as the
root directory and whatever subdirectory you use to store your scripts for a given
project. In the previous examples using MySQL, I used the database name of
javastore and the username of hotcoder with the password javascript. You can
use any names that you want as long as you establish them in the MySQL
database first. With the connectTest.php script, you should see a big “Connection
confirmed” in the middle of your screen if you have established the MySQL
database message.

If your connection fails, check the following:

• Be sure that you have entered your host (server), user, and passwords
into MySQL as shown in Figure 14.8, or in your hosting service’s MySQL
application for setting usernames and passwords. (The hostname is
established by the hosting service.)

• Check to be sure that you have placed the PHP file in the root directory. If
the PHP file is in the wrong place, it won’t display at all. This has nothing
to do with a failed connection to MySQL.

• Make sure that your Apache server and MySQL monitor are running if you
are using your computer as a client and server.

Selecting the Database with PHP

Use the PHP function mysql_select_db(databasename, connection) to select
the that database you want to use. The database name is the name that you
have given the database on the host. The connection name is the variable where
the mysql_connect() data is stored. This example suppresses the automatic
feedback to the web page using an “at” sign (@) in front of the database select
function. Only the die() function message is displayed with the @ symbol at the
beginning of the select database function.

<?php

//Define elements
$server="localhost"; //Host name
$user="hotcoder"; //User name
$pass="javascript"; //Password
$javastore ="javastore"; //database name

//Connect to MySQL
$connectMy = mysql_connect($server, $user, $pass);

//Choose database
$dataB=@mysql_select_db($javastore,$connectMy) or die ("Database not
responding");

if ($dataB) {
$reply="Database is selected and ready to go.";
}
echo "$reply";
?>

When you can connect to MySQL and the desired database, the rest is pretty
smooth sailing. You will find that far fewer problems occur when using a hosting
service than when attempting to run both the Apache server and MySQL monitor
on your own computer.

Inserting Tables into the Database

The same MySQL commands used in the previous section on creating a table now
can be used in a PHP script to create a table for the database. The two-step
process involves first creating a string with the MySQL commands. Usually, we
prefer to use a variable for the table name so that when a different table needs to
be inserted, all we need to do is to substitute table names. In the first step, the
string with the command elements replicates the same statements and
arguments that would be done in the MySQL monitor. Other than the variable
name substituted for the actual table name, the script between the quotation
marks is exactly what would be written in the MySQL monitor when creating a
table. Next, use the mysql_query(query,connect) function to send the
command to MySQL. The following script creates a table named dognames in the
database named javastore. Substitute your own names for the user, password,
database, and table, if you want. If you are using your own hosting service, be
sure to use the root names that your hosting service assigns.

<HTML>
<head>
<Title>Make Table</title>
</head>
<body bgcolor="orangered">
<center>
<h1>
<?php
//Define elements
$server="localhost"; //Host name
$user="hotcoder"; //User name
$pass="javascript"; //Password
$useBase ="javastore"; //database name
$tabName="dognames"; //table name
//Connect to MySQL
$connectMy = mysql_connect($server, $user, $pass);

//Choose database
$dataB=mysql_select_db($useBase,$connectMy);
// MySQL command in variable
$sql = "CREATE TABLE $tabName (dogname varchar(30), breed
varchar(20))";
// Effect Command
$result = @mysql_query($sql,$connectMy) or die("Table not created.");
if ($result) {
echo "Table has been created.";
 }
?>
</h1>
</center>
</body>
</html>

Save the script as makeTable.php, and launch it from your browser. If you get
any result other than “Table has been created,” check your script and the names
of the different connections.

Inserting Records into a Table Using PHP and JavaScript

To add records, you will need data sent from HTML to a PHP script. As you have
seen in previous sections, you can pass data between HTML and PHP by using the
GET method in a form. The role of JavaScript is to verify the data. Both the PHP
script and the HTML page use the following color palette saved in an external CSS
file:

Color A FFB3E6 Pink light tan

Color B 260000 Dark, dark red

Color C A65900 Tan

Color D 664066 Gray

Color E 000000 Black

First, create your CSS page and save it in the root directory.

adder.css
h1 {
font-size:18pt;
font-family:verdana;
color:#a65900;
background-color:#260000;
font-weight:bold
}

.bodText {
font-family: verdana;
font-size:11pt;
font-weight:bold;
color:#ffb3e6;
background-color:black
}

body {
background-color: #a65900;
}

Next, create your HTML page with JavaScript providing verification services, but
with the main work being done by HTML forms.

recordAdder.html
<HTML>
<head>
<link rel="stylesheet" href="adder.css" type="text/css">
<Title>Record Adder</title>
<script language="JavaScript">
function checkIt() {
for(var x=0;x<2;x++) {
var checker=document.forms[0].elements[x].value;
if (checker=="") {
alert("Please fill in all windows.");
 }
 }
}
</script>
</head>
<body>
<center>
<h1> Add Records </h1>
<form name="records" method=get action="newRecord.php">
 Dog's Name:
<input type=text name="name">

 Dog's Breed:
<input type=text name="breed"><p>
<input type="button" value="Verify" onClick="checkIt()">
<input type=submit>
</form>
</body>
</html>

The PHP script gets two variables from HTML. One is name and the other is breed,
stored in the form element names. The two HTML variables are transformed into
$name and $breed in PHP. The $name variable is part of a record that goes into
the field dogname; $breed goes into the field breed in a table named dognames.
The general MySQL statements are loaded into a variable, $sql. Then, using the
mysql_query function, send the data into MySQL as a record.

addRecord.php
<html>
<head>
<link rel="stylesheet" href="adder.css" type="text/css">
<Title>Add new record</title>
</head>
<body>
<?php
//Define elements
$server="localhost"; //Host name
$user="hotcoder"; //User name
$pass="javascript"; //Password
$dataB ="javastore"; //database name
$ctable="dognames"; //table name
//Connect to MySQL
$connectMy = mysql_connect($server, $user, $pass);
//Choose database

mysql_select_db($dataB,$connectMy);
//Variables from JavaScript become data for MySQL.
$sql="INSERT INTO $ctable (dogname, breed) VALUES('$name','$breed')";
//Use the query function to send record to MySQL.
mysql_query($sql,$connectMy);
$msg=$name . " has been added.";
echo "$msg";
?>
</body>
</html>

Save the PHP file as newRecord.php, and put it in your root directory or a folder
in the root directory along with the CSS and HTML pages. Figure 14.14 shows the
initial screen. As soon as the Submit Query button is clicked, the data is sent into
the database. With more entries by the user, the role of JavaScript verification
becomes more important.

Figure 14.14. The Verify button is JavaScript’s
contribution to the page.

Selecting Records from a Table

Getting records from a MySQL database via PHP and sent to the browser works
very much like the routine for recording records, but the order is reversed. The
PHP script first makes the connection and selects the database. Then the script
queries the MySQL table using the SELECT statement. To get a better
understanding of what happens when selecting data from a table, everything on
the table is selected using the wildcard asterisk (*) and is stored in a variable.
After getting the data, the next set of statements in PHP gets the precise data
that you need.

Initially, SELECT * FROM TABLE dognames pulls out all the information in the
table and stores it in a variable named $result. Next, the mysql_result()
function returns the data in one cell from a result set. The result set is broken
down into the row and field. For example, this statement stores the returns of the
contents of row 5 (the sixth row because the rows begin with row 0) of the field

titled dogname from the result set of the table named dognames stored in
$result.

$name=(mysql_result($result,5,"dogname"));

You can change the row value (5) to anything that you want, as long as your
number is from 0 to the number of rows in your table minus 1.

Because the field dogname contains a pooch’s name, the variable $name now
should contain the name of the dog that you put into the sixth row (row 5) of the
table. The PHP script passes the name back to the browser for viewing.

Passing variables from HTML to PHP was demonstrated in the last example, and
this next set of scripts uses the same technique. Thus, to get the results from a
row in a table in a database, you have to send only a single number from HTML to
PHP. To get started, the following color palette has been selected:

Color A 004CB3 Blue

Color B FFFFE1 Pale, pale yellow

Color C A6B380 Muddy green

Color D D95900 Dark tan

Color E C5FFC0 Pale blue/green

Color F 000000 Black

First, using colors from the palette, create the following CSS file, and save it and
the other two files in the root directory or a subdirectory within your root
directory.

select.css
.bodyText {
font-family:verdana;
color:#004cb3;
background-color: #ffffe1;
font-size:11pt;
font-weight:bold
}

h1 {
font-family:verdana;
font-size:18pt;
color:#c5ffc0;
background-color:#d95900
}

Next, you need an HTML page to pass the data from the user to the PHP page. As
noted previously, it requires nothing but a number to be passed to find a row.
Like in the previous HTML script, the data value is passed through the name of a
form element. (See Figure 14.15.) Look for the dn name in the text form element.

Figure 14.15. The number entered in the text window
will be sent to the PHP page as a variable.

selectData.html
<html>
<head>
<link rel="stylesheet" href="select.css" type="text/css">
<Title>Add new record</title>
</head>
<body bgcolor=#a6b380>
<center>
<h1> Retrieve Data </h1>
<form name="eye" method=GET action="getData.php">
 Please enter a row number:
<input type="text" size=2 name="dn">
<input type=submit>
</form>
</body>
</html>

The key in the HTML file, of course, is the form element with the dn variable
name that will be used by PHP to find the desired row. Finally, the PHP page will
take the dn variable and display the row information shown in the following script.

getData.php
<html>
<head>
<title>Get the Data</title>
<link rel="stylesheet" href="select.css" type="text/css">
</head>
<body bgcolor=#d95900>
<?php
$server="localhost"; //Host name
$user="hotcoder"; //User name
$pass="javascript"; //Password
$dataB ="javastore"; //database name
$ctable="dognames"; //table name
//Connect to MySQL
$connectMy = mysql_connect($server, $user, $pass);
//Select database
mysql_select_db($dataB,$connectMy);

//Query specific table in database.
$result = mysql_query("SELECT * FROM dognames",$connectMy);
//Get method sends variable data 'dn' from HTML to PHP script—$dn.
$name=(mysql_result($result,$dn,"dogname"));
//Form variable value remains constant for both fields.
$breed =(mysql_result($result,$dn ,"breed"));
$msg=$name . " is a " . $breed;
echo "$msg";
?>
</body>
</html>

Summary

JavaScript’s role in working with server-side languages such as PHP is one of
preprocessing. Before data is passed to PHP to be placed into a database, the
data needs to be examined to find out whether the user entered the text and
values correctly. In this way, when the data is passed to PHP and on to a MySQL
database, the user is not surprised to find either empty fields or mistakes that
require re-entering data.

However, while JavaScript does have a pivotal role in communications with the
server-side elements in a script, the data is passed by the form’s submit routine.
Unfortunately, the submit() function in JavaScript will not set in motion the
necessary elements to send data in the HTML page’s forms to the PHP script to be
processed. However, you can use the submit() function to launch a PHP script
where passing variables in not a requirement.

This very short introduction to PHP and JavaScript is meant to illuminate the role
of JavaScript as a preprocessor and to show you how to use the basic elements of
PHP. If you are interested in doing more with PHP and JavaScript, many excellent
books are available, and several sites are dedicated to PHP where you can learn
much more.

Chapter 15. Using ASP with JavaScript

CONTENTS>>

• Creating ASP Pages
• Variables in VBScript
• Operators and Conditional Statements
• Loop Structures
• Arrays
• Passing Data from Javascript to ASP
• Controlling Multiple ASP Pages with JavaScript
• Setting Up the Access 2000 File
• Placing the Access 2000 File on the Server and Preparing The DSN
• Making the Connection Between Your ASP Page and Database File
• Reading an Access 2000 Database with ASP
• Reading and Displaying Multiple Fields
• Inserting Records into Access from HTML

In this book, JavaScript has been examined as a client-side scripting language,
and in this chapter it will continue to be so. As with PHP, discussed in Chapter 14,
“Using PHP with JavaScript,” the role of JavaScript is that of a preprocessor in

dealing with Active Server Pages (ASP). Before data are sent to a back-end or
server-side script, you want to make sure that the data entered are what you
want. If your data are examined by a server-side script, a good deal of bandwidth
is wasted as messages are passed back and forth between the client’s browser
and the server. However, if JavaScript makes sure that the data are clean, then
all of the preprocessing is done in the client’s browser, with nothing wasted in
between.

ASP works with Microsoft NT Servers. ASP pages are usually associated with a
language called VBScript, but you can find JavaScript or XML in ASP pages. Like
the PHP pages discussed in the previous chapter, ASP pages are saved in the web
server’s root directory, but with the .asp extension instead of .php. Depending on
the server you’re using, your root directory will vary. The domain that I use for
Active Server Pages is active1.hartford.edu, and I keep my pages in a folder
named hotjava. If my ASP page is saved as whatzUP.asp, to access it I would
enter this:

http://active1.hartford.edu/hotjava/whatzUP.asp

The addressing looks a lot like what you use for HTML, except that the extensions
end with .asp instead of .html.

NOTE

Before you get started, you will need an NT server. On some versions of Windows
(such as Windows 2000), you can run Windows NT software, but on others you
cannot. To save yourself some grief, I recommend signing up for a professional
Windows NT hosting service. Not only will you get real-world experience using
ASP, but you also can use any version of Windows, any Macintosh OS, or your
Linux box to learn how to work with ASP and JavaScript.

To find a hosting service, use “Windows NT Hosting” as a keyword in any of the
search engines, such as Excite, Yahoo! or AltaVista. Prices will vary widely, but
because you do not need much server space for the short examples in this
chapter, you can get the cheapest one available. To try it out, sign up for a
service that has low (or no) setup fees as well as low monthly service fees. You
don’t need a domain name, just an IP address that the hosting service can
provide. (An IP address to access an ASP file looks something like
http://323.64.12.543.23/hotJava/good.asp.) For example,
www.hostek.com/plans. shtml has one plan with a monthly fee of $12.95 for
50MB of disk space with no setup fee. So, for about $13, you can spend a month
learning ASP in a real-world environment to see if it’s what you need. (The price
quoted was at the time of this writing and might change.)

Creating ASP Pages

An ASP script has a beginning tag, <%, and an ending tag, %>, that work like the
containers in HTML. In some ASP pages, you will mix HTML and JavaScript or
even some XML, but here the focus is on using VBScript as the main scripting
language for the server-side script and using JavaScript for the client-side script.
The basic ASP container using VBScript has the following format:

<%

VBScript
%>

Writing VBScripts

Use your favorite JavaScript text editor to create your ASP scripts. If you use
Notepad, place quotation marks around the name of your file when you save it,
and Notepad will add no unwanted .txt extension. The following script will get you
started:

<%
Dim WhatzUP
WhatzUP="Where did I put my code?"
Response.write WhatzUP
%>

Save the file as whatzUP.asp in your server root directory or subdirectory. For
example, I saved my ASP file in a folder (directory) named hotJava in my web
server’s root directory, active1.hartford.edu. To launch the program, I would type
this:

http:// active1.hartford.edu /hotJava/whatzUP.asp

Use your domain and subdirectory names instead of active1.hartford.edu and
hotJava. When you call up the script in your browser, you will see this in the
browser window:

Where did I put my code?

As in JavaScript, if you get an error, check your code and check your directory.

Basic Screen Display Format

To display information to the screen, VBScript uses the statement
Response.write, not unlike document.write() in JavaScript. The statement
works like document.write() in that it accepts literals, variables, functions, or
expressions. For example, this line:

Response.write "I like JavaScript."

works like this:

document.write("I like JavaScript.")'

Variables in VBScript

While declaring a variable in JavaScript is optional, it is not in VBScript. You must
use a Dim (for dimension) statement to first declare the variable.

<%
Dim animal
animal = "Zebra"
%>

To declare multiple variables, you can use a single Dim statement:

Dim customers, products, prices

So, remember that while declaring a variable is optional in JavaScript, it is not in
VBScript.

VBScript Data Types

As in JavaScript, data are not typed. That is, the variables are “smart” and will
change type with the context of their use. Also as in JavaScript, you can use
HTML tags as values in VBScript.

<%
Dim newpar, one, two, three
newpar = "<p>"
one = "The loneliest number."
two=222.222
three= 3
Response.write one
Response.write newpar
Response.write two
Response.write newpar
Response.write three
%>

The output of the previous example will be this:

The loneliest number
22.222
3

If you treat variables the same way in VBScript as you do in JavaScript, you
should be fine. However, you must remember to use the Dim statement to declare
all variables first.

VBScript Comments

Comments in VBScript work like those in JavaScript. They are ignored by the
parser, but they inform the programmer. VBScript uses a single quotation mark
(') instead of double slashes (//); otherwise, they work the same. The following
example shows a comment in VBScript:

<%
Dim customer
customer="Frank Talker"
'Each customer name is first placed into a variable.

Response.write customer
%>

Operators and Conditional Statements

You have to pay close attention to the operators in JavaScript and VBScript.
Some are the same, and some are different. Critical differences can be found in
the use of the assignment variable (=) in both assignment statements and
conditional statements. Table 15.1 shows the operators used in VBScript.

Table 15.1. VBScript Operators
Operator Use Format Example
= Assignment inven=832

+ Addition total=item+tax+shipping

- Subtraction discount=regPrice-salePrice

* Multiplication itemTotal=item * units

/ Division distrib=all/part

\ Integer division hack=433.33\32

Mod Modulus leftOvr = 87 Mod 6

u Exponentiation cube = side ^ 3

& Concatenation FullName = “Java” & “Script”

= Equal to if alpha = beta Then ….

<> Not equal to if Jack <> Jill Then ….

> Greater than if elephant > mouse Then ….

< Less than if subtotal < 85 Then ….

>= Greater than or equal
to

if counter >= sumNow Then ….

<= Less than or equal to if 300 <= fullAmount Then ….

Not Negation if not (alpha > beta) Then….

And Logical AND if (alpha > beta) And (delta < gamma)
Then ….

Or Logical OR if (alpha=beta) Or (delta=gamma) Then….

Xor Logical XOR if (sum >=1000) Xor (tax > .08) Then….

Eqv Logical equivalence if (alpha = beta) Eqv (delta=gamma)
Then….

Imp Logical implication if alpha Imp beta Then….

VBScript Conditionals

VBScript conditionals are similar to those found in the different versions of the
Basic language, especially Microsoft’s Visual Basic. If you are familiar with just
about any kind of Basic programming, you will be on familiar ground. However,
the logic of VBScript conditional statements is pretty much the same as that
found in JavaScript, so you should not have too much difficulty.

The if/then Statement

VBScript employs this format:

if statement then another statement

which is equivalent to JavaScript’s

if (statement) {
 another statement
}

The then keyword replaces the first curly brace, and there is no equivalent to the
second curly brace. For example, the following script uses the if/then format in
a single line:

<%
Dim alpha, beta
alpha="JavaScript"
beta="VBScript"
if alpha <> beta then Response.write "They are different."
%>

As in JavaScript, the else keyword can take the script to a different path when
the condition is not met, as the following script shows:

<%
Dim designTime, payment
designTime=88
payment=5500
if payment > 5000 And designTime < 80 then Response.write "Take the
job." Else
Response.write "The schedule is too long."
%>

Using ElseIf and Case

The ElseIf keyword can be used when you have several different conditions. The
last statement before End If is an Else statement. You can have as many
ElseIf statements between the first If condition and the Else condition as you
want.

<%
dim alpha, beta
alpha=10
beta=20
If alpha = beta then
 Response.write "They are equal"
ElseIf alpha > beta then
 Response.write "The first is bigger"
ElseIf alpha < beta then
 Response.write "The second is bigger!"
Else
 Response.write "I give up"
End If
%>

As in JavaScript, you might not prefer to use the ElseIf structure. VBScript has a
similar statement to the switch…case statement in JavaScript. It has the
following structure:

<%
Dim flowers
flowers = "rose"
Select Case flowers
Case "posey" Response.write "Two pence please."
Case "daisy" Response.write "Her last name was Miller."
Case "rose" Response.write "By any other name…."
Case Else Response.write "No flower of that nature is available."
End Select
%>

In the previous example, the screen would display this:

By any other name….

This is because the Case variable, flowers, is defined as rose, and the Case with
rose prompts a Response.write of By any other name…. Whichever structure
you prefer, the Elseif or Case, is available for scripts with multiple conditions.

Determining Data Types in Conditional Statements

The VarType() function in VBScript is handy for determining what type of data is
in a variable at any given time. This function returns the variable as 1 of 16
coded values. In the following example, a string variable and numeric variable are
detected in a conditional statement:

<%
Dim stringVar, numVar, typeVar, newline
newline="
"
stringVar="I am a string."
numVar=1234
if VarType(stringVar) = 8 then Response.write stringVar & " This is a
string." &
newline
if VarType(numVar) = 2 then Response.write numVar & " This is an
integer."
%>

When the program executes, you will see the following on the screen:

I am a string. This is a string.
1234 This is an integer.

The conditional statement uses the codes in VBScript to sort the precise data type.
Table 15.2 shows all of the codes.

Table 15.2. VarType Codes

Code Data Type in Variable
0 Empty
1 Null
2 Integer
3 Long integer
4 Single
5 Double
6 Currency
7 Data
8 String
9 Object
10 Error
11 Boolean
12 Variant (arrays only)
13 Data access object
17 Byte
8192 Array

TypeName() is another useful function in VBScript for determining data type.
However, instead of returning a number, it uses a string. The following script
demonstrates some of the TypeName() syntax:

<%
dim alpha, beta, gammma, delta,newline
alpha=5
beta=5.7
gamma="Alfred"
delta=CDate(#06/06/2004#)
newline="
"
Response.write TypeName(alpha) & newline
Response.write TypeName(beta) & newline
Response.write TypeName(gamma) & newline
Response.write TypeName(delta) & newline
%>

When you launch the script, you will see the following data types listed:

Integer
Double
String
Date

Loop Structures

As in JavaScript, VBScript has more than one loop structure. The for/next loop
is like the for loop in JavaScript, and the do/while loop is equivalent to the
do/while loop in JavaScript. The do/until loop is like the do loop in JavaScript.

For/Next Structure

The for/next structure in VBScript expects a beginning and ending value for the
loop. With each iteration of the loop, any statements between the for and next
statements are executed. The following example shows a simple application using
a loop to place formatted values on the screen. Note how the variable spacer is
created using a loop as well.

<%
Dim counter, newline,spacer,x
newline="
"
for x=1 to 10
 spacer="-" & space
next
For counter = 1 to 25
 Response.write (counter & spacer & counter + 25& spacer &
counter + 50&
 spacer & counter + 75 & newline)
Next
%>

As with JavaScript, the for/next structure is best employed when the beginning
and terminating values are known. With the two do loop structures, some kind of
independent counter variable signals the end of the loop.

Do/While Loop

The do/while loop begins with the termination condition and keeps looping until
that condition is met. The following example shows this loop at work:

<%
Dim counter, newline
newline="
"
counter=12
Do While counter >-1
 Response.write ("Current dot com value is $" & counter & "
million.")
 Response.write newline
 counter = counter - 1
Loop
%>

You really need a script that tells you that your dotcom stock is going to drop
before it goes through the floor!

Do/Until Loop

The do/until loop keeps repeating until the stop condition is met. It is the
logical opposite of the do/while loop. (Using it, your dotcom stock will fare even
worse!)

<%
Dim counter, newline

newline="
"
counter=12
Do Until counter >-1
 Response.write ("Current dot com value is $" & counter & "
million.")
 Response.write newline
 counter = counter - 1
Loop
%>

The Do Until loop gives one additional iteration after it encounters the
termination condition.

Arrays

Arrays in VBScript and JavaScript are the same in concept but are put together a
little differently. The multidimensional arrays in VBScript are easier to work with
than their counterpart in JavaScript. Like variables, arrays begin with a Dim
statement, but an array size is provided as well. The following shows a simple
example:

<%
Dim item(3)
item(0) = "Greater Swiss Mountain Dogs"
item(1) = "Bernese Mountain Dogs"
item(2) = "Pyrenean Mountain Dogs"
Response.write item(2)
%>

Note that, in VBScript, the array elements are in parentheses and not brackets,
but, as in JavaScript, the first element is 0 and not 1.

Multidimensional Arrays

If you are working with more than a single dimension and need to put it in an
array in VBScript, you will find it easy to do, as is the case in most Basic
programming languages. This statement has 51 elements in one dimension and
15 in another:

Dim SalesRep (51,15)

Using two dimensions, it might help to envision the array as follows:

Dim SalesRep (Row,Column)

A database with sales representatives in 50 states has up to 15 representatives in
each state. (Fifty-one states are dimensioned because the 0 element will not be
used in this particular example.) The states are identified by their admission to
the union. Maryland has four representatives listed in the two-dimensional array
in the following script:

<%

Dim SalesRep(51,15), newline, counter
newline="
"
salesRep(7,0)="Smith"
salesRep(7,1)="Jones"
salesRep(7,2)="Lee"
salesRep(7,3)="Hallohan"
salesRep(7,4)="Gonzalez"
for counter = 0 to 4
 Response.write salesRep(7,counter) & newline
next
%>

You should get the following output:

Smith
Jones
Lee
Hallohan
Gonzalez

Using a loop structure, as the previous example shows, finding what you want in
the array is simple and keeps everything well organized.

Functions

VBScript has built-in functions and user functions just like JavaScript. (Microsoft
keeps a list of the built-in functions at
http://msdn.microsoft.com/scripting/default.htm?/scripting/vbscript.) You will
find JavaScript and VBScript functions very similar. The user function has this
format:

Function functionName(arguments)
 Statements
End function

The following shows a simple example and includes a built-in function, Space(),
to add some space between the first and last names:

<%
Function fullName(lastName,firstName)
 Response.write firstName & Space(1) & lastName
End function
Response.write fullName("Sanders","Bill")
%>

Passing Data from JavaScript to ASP

In the role of a confirmation tool, JavaScript can check the content of forms
before data is sent to an ASP page. Such a role is important for real-world forms
because, if troublesome data are sent to an ASP page, the wrong data could end
up in your database.

To see one role of JavaScript in gathering information, these next two scripts, one
an HTML page and the other a VBScript script, show how data can originate in
JavaScript and be passed to an ASP page.

Two key lines are used to pass data from HTML to ASP in the two scripts. On the
HTML side, the <form> tag has two attributes, action and method. The method to
pass data is either post or get. With ASP pages, use post. The action is to load
the page specified in the URL assigned to the action attribute. Use the following
general format:

<form method=post action="myServPag.asp">

On the server-side, use the VBScript function Request.form("varName"). The
function expects an argument in quotation marks with the name of the variable
from the HTML page. Using the Request.form() function, you must remember to
place quotes around the variable name. Normally in a function in JavaScript,
quotation marks are reserved for string literals, as is the case in VBScript.
However, using Request.form(), you find an exception to this rule. The following
general format is used:

<%
Dim varName
varName=Request.form("varName")
%>

The name of the variable in the ASP page can be any name that you want;
however, I found that by using the same name in both the HTML and ASP pages,
keeping track of everything is easier.

When you submit an HTML form, all variables in the form are passed to the ASP
page. Therefore, you can have several variables sent at once, and each can be
stored separately in a VBScript variable or array element.

The JavaScript function simply loads a hidden form with a value. Note that the
JavaScript variable greet is placed into a hidden form named alpha. The variable
that is passed to the ASP page script is alpha because ASP is getting its variable
from a form element named alpha. Thus, JavaScript makes a “bank shot” to the
form and then to ASP rather than directly to the VBScript script.

On the ASP side of the equation, you will see very little VBScript. However, you
can use CSS to style your ASP page. In fact, you will see that most of the code is
HTML or CSS, with just a few lines of VBScript.

getData.html
<html>
<head>
<title>Sending Data to an ASP Page </title>
<script language="JavaScript">
function loadIt() {
 var greet="Telegram from ASP!";
 document.storage.alpha.value=greet;
 }
</script>

</head>
<body onload="loadIt()";>
<form name="storage" method=post action="greetings.asp">
 <input type=hidden name="alpha" >
 <input type=submit value="Submit form and get this page's
message back from ASP">
</form>
</body>
</html>

Save this script as getData.html. It uses the post method to open an ASP page
named greetings.asp. The ASP page immediately echoes whatever is in a variable
named alpha. As you will see, because alpha is not declared or defined on the
ASP page, its content could be only what has been passed to it from the HTML
page. Save the following page as greetings.asp, and put it in the root directory or
subdirectory in your root directory along with the getData.html page.

greetings.asp
<html>
<head>
<style type="text/css">
body {
 font-family:verdana;
 font-size:24pt;
 color:#ffff33;
 background-color:#f3cc00;
 font-weight:bold;
 }
#blackground {
 background-color:black;
 }
</style>
</head>
<body>
<div ID=blackground>

 <center>
 <%
 Dim alpha
 alpha=Request.form("alpha")
 Response.write alpha
 %>
 </center>

</div>
</body>
</html>

When you run the getData.html script, press the Submit button to launch the ASP
script. Your screen shows the message “Telegram from ASP!”

Controlling Multiple ASP Pages with JavaScript

One use of JavaScript is to serve as a controller for ASP pages appearing in an
HTML environment. Because ASP replaces a page that it is called from, one plan
of action is to use JavaScript to create a number of buttons used to launch
different ASP pages within a frameset. JavaScript can reside in the menu page,
and ASP is called in the body page of a two-column frameset. At the same time,

both the JavaScript page and the ASP page share a common external style sheet.
Seven scripts are required for this project: an external CSS file, a frameset page,
the menu page using JavaScript, a placeholder page, and three ASP pages
demonstrating different features of ASP.

Cascading Style Sheet

Using a color scheme from The Designer’s Guide to Color Combinations by Leslie
Cabarga (North Light Books, 1999), the first step is to create a palette using the
following colors (all values are in hexadecimal):

Color A FFE699 Light tan

Color B CC994C Tan

Color C CC0019 Deep red

Color D 00804C Dark green

Color E 808080 Gray

Color F 000000 Black

This particular color scheme was selected because it contains black and gray, the
colors of the button in HTML forms. The following style sheet incorporates the
colors used in both the ASP and HTML pages.

controller.css
.bigRed {
 color: #cc0019;
 background-color: #ffe699;
 font-family: verdana;
 font-weight: bold;
 font-size: 18pt;
 }
.midRed {
 color: #ffe699;
 background-color: #cc0019;
 font-family: verdana;
 font-weight:bold;
 font-size: 14pt;
 }

Save the CSS style sheet in the same directory as the files for the HTML and ASP
pages. All of the pages will employ the same style sheet.

This next HTML page establishes the frameset where the initial HTML pages—and,
eventually, the ASP pages—will go.

controlSet.html
<html>
<frameset cols="25%,*" border=0>
 <frame name="menu" src="jMenu.html" frameborder=0 scrolling=0>
 <frame name="display" src="jsD.html" frameborder=0 scrolling=0>
</frameset>
</html>

The left side of the frameset opens with a menu page and a blank HTML page in
the right frame. All of the JavaScript controllers are in the menu. A simple
function in JavaScript is used to launch any of the ASP pages in the right frame.

jMenu.html
<html>
<head>
<link rel="stylesheet" href="controller.css" type="text/css">
<script language="JavaScript">
 function loadASP(url) {
 parent.display.location.href=url;
 }
</script>
</head>
<body bgcolor=#00804c>

<table BORDER=0 height=70%>
 <tr align=left valign=top>
 <td bgcolor="#808080"><center>
 <div class="bigRed"> Menu </div>
 </center>

<form>
 <input type=button
onClick="loadASP('alpha.asp')"
value="Selection1">
 <p><input type=button
onClick="loadASP('beta.asp')"
value="Selection2">
 <p><input type=button
onClick="loadASP('gamma.asp')"value="Selection 3">
 </td>
 </tr>
</table>
</body>
</html>

The initial page in the right frame is a “dummy” page used to occupy space until
one of the ASP pages is launched. Figure 15.1 shows how the initial page appears
when the frameset is loaded.

Figure 15.1. The area on the right is reserved for ASP by
an initial placeholder page.

jsD.html
<html>
<head> <title>Display Page</title>
<link rel="stylesheet" href="controller.css" type="text/css">
</head>
<body bgcolor=#cc994c>
 <div class=midRed> ASP Pages Appear Here </div>
</body>
</html>

The first ASP page simply displays a message in plain text. However, it does load
the same style sheet as the two previous HTML pages.

alpha.ASP
<html>
<head> <title>Control Menu</title>
<link rel="stylesheet" href="controller.css" type="text/css">
</head>
<body bgcolor=#808080>
<center>
<%
Response.write "This is plain text."
%>
</center>
</body>
</html>

The second ASP page responds with a text message using one of the style sheet
classes.

beta.ASP
<html>
<head> <title>Control Menu</title>
<link rel="stylesheet" href="controller.css" type="text/css">
</head>
<body bgcolor=#808080>
<center>

<%
Response.write "<div class=midRed> Here's the other CSS class
 </div>"
%>
</center>
</body>
</html>

The third ASP page, like the second, responds with a message that indicates that
yet another of the CSS classes has been employed (see Figure 15.2).

Figure 15.2. An ASP page using the same CSS style
sheet as the HTML page appears in the right column.

gamma.ASP
<html>
<head> <title>Control Menu</title>
<link rel="stylesheet" href="controller.css" type="text/css">
</head>
<body bgcolor=#808080>
<center>
<%
Response.write "<div class=bigRed> CSS Text like the Menu
 </div>"
%>
</center>
</body>
</html>

Microsoft Access, ASP, and JavaScript

One of the most popular Windows OS database programs in use is Microsoft’s
Access. Using Access 2000 , this section shows how to use HTML and JavaScript
as a front end to display, search for, and add records to an Access 2000 file on a
server. Most of the work is done using VBScript and Structured Query Language
(SQL) commands to query an Access 2000 file on a server using variables in a

script for showing what is in the database and as an input source for adding
new records. The database is made up of the following nine fields:

• Identity number
• Last name
• First name
• Address
• City
• State
• ZIP code
• Phone
• Email

The purpose is to create a table to show the information of a list of people stored
in the database. Each field must include a name, a data type, and the length of
the field for fixed-length types.

Three different files are involved in sending data between an HTML page and a
database.

Setting Up the Access 2000 File

You will need Microsoft Access 2000 for the rest of this chapter. All of the
example files were created using the Windows version of Access; at this time,
Microsoft is not selling a Macintosh version of Access. However, the Access files
on the book’s web site can be used on an NT Server, and all of the ASP pages
created with the Macintosh can read and write the files and return data from the
files.

For Windows users who have Access, the following set of steps shows how to set
up the database. (The steps were written using Access 2000 , but older versions
can be used as well, with some slight differences. The point is to create a .mdb
file with the set of fields shown.)

1. Launch Access 2000 from the Start menu. Select Blank Access database in
the dialog box, and click OK.

2. In the File New Database window, first select the desktop as the folder,
and then use the filename javaS.mdb in the File Name text window at the
bottom of the window. Click Create.

3. Double-click the option Create Table in Design View in the Database
window. In the Design View window, enter the following in the Field Name
and Data Type columns. Use the pop-up menu in the Data Type column to
select the data type. (All of the nine fields are text except for the first,
which is AutoNumber.) Unless otherwise noted, all of the field sizes are the
default size.

• ID AutoNumber. (Click the Key icon on the toolbar to make this field the
primary key.)

• Lname Text (default).
• Fname Text (default).
• Address Text (default).
• City Text (default).
• State Text (default); field size 2.
• Zip Text (default); field size 5.
• Phone Text (default); field size 10.

• Email Text (default).

4. After you define the nine fields, click the Disk icon on the toolbar and save
the table using the name JavaStable. Next, select File, Close from the
menu bar.

5. When you close the Design View window, you will see a window with your
new table in the javaS: Database window. Double-click the JavaStable icon
to open it. Enter three names and the rest of the fields in the table. The ID
column automatically provides a unique ID number as you enter data into
the other two fields.

6. After entering the data, click the Save icon (disk in the toolbar) and then
select File, Exit. You’re finished with entering data directly into the Access
2000 database table and file.

Placing the Access 2000 File on the Server and
Preparing the DSN

The next step is to open the root folder where you have been placing your ASP
pages and place your database file. If you are using a remote server, just use FTP
to move the Access 2000 file to the root folder or subfolder on the NT Server.

Next, you need to create a data source name (DSN) connection to the database
on the server. This connection allows your ASP application to interact with the
database. For Windows 2000 and Windows NT , use the following steps.

(Note: These steps are on the server. If you are using your computer as both
client and server, then you can follow these steps on your computer. If you are
administering another NT server, these steps should be on the remote server.)

1. Select Start, Settings, Control Panel. In the Control Panel, double-click on
the ODBC Data Sources icon to open the ODBC Data Source Administrator.

2. Click on the File DSN tab and click Add. Then select Microsoft Access
Driver (*mdb) from the menu and click Next.

3. Type in a descriptive name. We used JavaS for the file DSN name. Click
Next.

4. Click Finish, and then click Select. Navigate to the directory of your
database file. It will appear in the left window under Database Name. Click
on your database (for example, javaS.mdb) to select it, and then click OK.

5. Click OK twice. In the ODBC Data Source Administrator window in the File
DSN tab, you will see your new DSN name with the extension .dsn added.

Figure 15.3 shows what you should see in the File DSN folder in the ODBC Data
Source Administrator when you have correctly configured your data file.

Figure 15.3. Establishing your database file with an
appropriate data source is essential when you use your

own server.

When you enter the database filename in an ASP script, the DSN name is used by
the server software to enable a connection.

Making the Connection Between Your ASP Page and
Database File

To make a connection between an ASP page and a database, you need to know
the path to the database. The process itself is simple enough if you have the right
path. However, when you get the formula, you can reuse it on any database
within the same server. The following path was used:

d:\Inetpub\Wwwroot\hotJava\javaS.mdb;

In the example, drive D is used, but the correct drive could have been drives C or
E, or any other drive. The important fact to note in the path is that it is an
internal path to the root directories on the server. So, while a different address
had to be used to access the ASP pages (such as http://myserver.com) that
contained the code, the path in the ASP page references a local, internal path for
the server.

The path is just part of a longer driver definition required to connect the ASP
script to the database and the data within it. Generally, the path is defined in a
variable, and then the VBScript uses that variable in other commands to make
the connection. First, the provider needs to be defined. The following single line
defines the driver in the variable named hookUp:

hookUp= "Driver={Microsoft Access Driver (*.mdb)};
DBQ=d:\Inetpub\Wwwroot\hotJava\javaS.mdb;"

Because the provider information has been placed into a variable, when the
provider has to be used, you need to use only the variable name instead of the
long line of code.

The rudiments of setting up an ASP page to make a connection to a database and
pull out data can best be seen in a complete page and example. In that way, you
will be better able to understand the context of the required code. The following

ASP page pulls together the different parts needed to see the contents of a
database on a server.

Reading an Access 2000 Database with ASP

After the Access 2000 database has been set up and a DSN has been established
for it, you are ready to create an ASP page to pull data from the Access file and
send it to JavaScript. To begin, enter the following ASP script and save it in the
root directory or a subdirectory within the root directory of your server. Save the
file using the name readDB1.asp.

readDB1.asp
<%
Dim hookUp, Conn, ViewRecord, Lname, output, display, SQL
hookUp= "Driver={Microsoft Access Driver (*.mdb)};
DBQ=d:\Inetpub\Wwwroot\hotJava\javaS.mdb;" Set Conn =
Server.CreateObject("ADODB.Connection")
Set ViewRecord = Server.CreateObject("ADODB.Recordset")

Conn.Open hookUp
SQL="SELECT * FROM JavaStable"
ViewRecord.Open SQL, Conn

Do While Not ViewRecord.EOF
 Lname=ViewRecord("Lname") & "
"
 display =display & Lname
 ViewRecord.MoveNext
Loop
Response.Write display
ViewRecord.Close
Conn.Close
Set ViewRecord = Nothing
Set Conn = Nothing
%>

The first part of the script is for dimensioning the variables, defining the
connections, and then setting the connections. The several variables (such as
hookUp and Conn) are declared using the Dim statement. Next, the driver and
provider are placed into a variable named hookUp. The ADODB connection object is
placed into the variable Conn, and the ADODB recordset object is placed into a
variable named ViewRecord.

The next part opens the connection and defines an SQL command. The action
query selects all the records (* = wildcard) from the table named JavaStable in
the Access 2000 file named javaS.mdb. The next line opens the recordset in the
database defined in the connection and issues the SQL command.

One of the nicer features of VBScript is that it can loop through a recordset until it
encounters the EOF (end of file) of the recordset. Note also the use of the

tag in this block. Used in HTML as a line break, you will find that, in a text field,
the break works as well. The display variable concatenates the data with the line
break tag through the entire loop. To keep this first example simple, only one of
the nine fields, Lname, is passed to a variable, display, that collects all of the
data for the first field.

Next, the display variable is used with Response.Write to send the data to the
screen. Finally, the open connections are closed and the variables are reset to
Nothing.

Reading and Displaying Multiple Fields

The first script showed only one field, to simplify the process and focus on what
needed to be done for connection. The following script looks at all nine fields and
all the records in the fields. Save the script in your root directory or subdirectory
in the root directory.

ReadDB2.asp
<%
Dim hookUp, Conn, ViewRecord, ID, Lname, Fname, Address, City, State,
Zip, Phone, Email,
display, SQL
hookUp= "Driver={Microsoft Access Driver (*.mdb)};
DBQ=d:\Inetpub\Wwwroot\hotJava\javaS.mdb;"
Set Conn = Server.CreateObject("ADODB.Connection")
Set ViewRecord = Server.CreateObject("ADODB.Recordset")

Conn.Open hookUp
SQL="SELECT * FROM JavaStable"
ViewRecord.Open SQL, Conn
Do While Not ViewRecord.EOF
 ID=ViewRecord("ID")
 Lname=ViewRecord("Lname")
 Fname=ViewRecord("Fname")
 Address=ViewRecord("Address")
 City=ViewRecord("City")
 State=ViewRecord("State")
 Zip=ViewRecord("Zip")
 Phone=ViewRecord("Phone")
 Email=ViewRecord("Email")
 display =display & ID & "
" & Fname & Space(1) & Lname &
"
" & Address &
"
"
 & City & "," & Space(1) & State & Space(1) & Zip & "
" &
Phone & "
" & Email
 & "<p>"
 ViewRecord.MoveNext
Loop
 Response.Write display

ViewRecord.Close
Conn.Close
Set ViewRecord = Nothing
Set Conn = Nothing
%>

All of the variables use the same name as the fields in the database. In that way,
you are less likely to confuse what is what.

Inserting Records into Access from HTML

The final step is to create an HTML page through which you can add data to your
database. JavaScript plays the role of checking your data before submitting it.

First, you need to create your web page for data entry, and then you need to
create your ASP page to send the data to your Access file on the server. (After
you add your data, you can use the script in the previous section to read it and
make sure that it’s all there.)

addRecords.html
<html>
<head>
<style type="text/css">
body {
 font-family:verdana;
 font-size:11pt;
 font-weight:bold;
 background-color:ffabab;
 }
#myText {color:ff2626; background-color:black}
</style>
<script language="JavaScript">
function verify() {
 var flag=0;
 dv=document.reporter;
 for(var counter=0;counter < dv.length-2;counter++) {
 if(dv.elements[counter].value=="") {
 flag=1;
 }
 }
 if(flag==1) {
 alert("Please fill in all parts of the form:");
 } else {
 alert("Form is ready to submit");
 }
}
</script>
</head>
<body onLoad="document.reporter.reset()">
<h3>Fill in all windows in the form </h3>
<div ID="myText">
<form name="reporter" method=POST
action="http://active1.hartford.edu/hotJava/addRecords.asp">
 <input type=text name="ID">ID

 <input type=text name="Lname">Last Name

 <input type=text name="Fname">First Name

 <input type=text name="Address"> Address

 <input type=text name="City"> City

 <input type=text name="State" size=2>State

 <input type=text name="Zip" size=5>Zip

 <input type=text name="Phone" size=10> Phone

 <input type=text name="Email"> Email <p>
 <input type=button value="Verify:" onClick="verify()">
 <input type=submit value="Send information to database:">
</form>
</div>
</body>
</html>

The script for inserting data into the database must access a file on the NT server.
An added HTML tag is used to access an ADO (Active Data Objects) file required
when you add data. Using a set of double and single quotations, the SQL variable

(and, thereby, command sequence) is set up; when that’s done, the script follows
a familiar path.

addRecords.asp
<!-- METADATA TYPE="typelib"
 FILE="C:\Program Files\Common Files\System\ado\
msado15.dll" --> <HTML>
<%
Dim Conn,Cmd,
intNoOfRecords,jsID,jsLname,jsFname,jsAddress,jsCity,jsState,jsZip,js
Phone,jsEmail,SQL
jsID=Request.Form("ID")
jsLname=Request.Form("Lname")
jsFname=Request.Form("Fname")
jsAddress=Request.Form("Address")
jsCity=Request.Form("City")
jsState=Request.Form("State")
jsZip=Request.Form("Zip")
jsPhone=Request.Form("Phone")
jsEmail=Request.Form("Email")
Conn = "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data
ÂSource=d:\Inetpub\Wwwroot\hotJava\javaS.mdb;"
Set Cmd = Server.CreateObject("ADODB.Command")
Cmd.ActiveConnection = Conn
SQL= "INSERT INTO javaStable(ID,
Lname,Fname,Address,City,State,Zip,Phone,Email) VALUES
(" & jsID & ",'" & jsLname & "','"& jsFname & "','" & jsAddress &
"','" & jsCity & "','"
& jsState & "','" &
jsZip & "','" & jsPhone & "','" & jsEmail & "')"
Cmd.CommandText =SQL
Cmd.CommandType = adCmdText
Cmd.Execute intNoOfRecords
Set Cmd = Nothing
Response.Write "Records entered:"
%>
</HTML>

When they’re in the VBScript, the variables are dimensioned and then data from
the HTML page is pulled into the page using Request.Form(). The nine variables
matching the HTML names are inserted as ASP variables using a lowercase js
before each of the HTML variable names. Next the connection protocols establish
a link with the database. (If you are using Access 97 , substitute 4.0 with 3.1
right after OLEDB.)

Using the SQL command INSERT, you list the names of each field and then insert
data into them. If you used literals, your VALUES would look like this:

"…VALUES (21, 'Adams','John','32 Bath', 'Boston', 'MA', '05432','322-
123-4567'
'jadams@tparty.gov')"

Because you need to use variables instead of numeric and text literals, the
variables must be concatenated into the format recognized by VBScript.
Everything but the variables themselves needs to be in quotation marks, and all
text must have single quotation marks around it. When copying the SQL contents,
be very careful.

Summary

As with PHP, JavaScript can play a verification role with ASP pages. A good deal
of the scripting work is handled by VBScript, and, on the server side of the
equation, that is to be expected. However, as you delve deeper into back-end
scripts, you will find that more use can be found in a good JavaScript verification
script on the client side.

Much more can be done with both JavaScript and ASP pages than could be
included in this chapter. However, the point is that you can effectively use the
two together to gather data, send the data to an Access database, and then view
the data stored. As a starting point, this chapter should have given you a clear
idea of how ASP pages can be effectively used with HTML, JavaScript, and CSS.

Chapter 16. CGI and Perl

CONTENTS>>

• Scripting with Perl
• A Brief Perl Tutorial
• Perl Operators
• Perl Statements
• File Handling in Perl
• Passing Data to CGI From HTML

Like other server-side languages, the Practical Extraction and Report Language
(Perl) is associated with a protocol, the Common Gateway Interface (CGI). Other
languages are used with CGI as well but, just as VBScript is the main language
associated with Active Server Pages (discussed in the previous chapter), Perl is
the main language associated with CGI.

While direct scripting can occur between a UNIX (or Linux) server and your
computer, the material presented in this chapter assumes that most readers want
to know how to create scripts with a Windows or Macintosh OS, and not Telnet or
work from a UNIX shell. So, the focus will be on writing Perl scripts and
examining how they interface with JavaScript and HTML pages. The major
scripting tool (if you can call it that) will be the humble text editor.

Scripting with Perl

Like all scripting languages, Perl has a set of statements, variables, functions,
operators, and other typical language features. However, because Perl was
designed to work with data to be passed between clients and servers, it has
special commands for handling data to be stored and retrieved from the server.
Variables in HTML forms can be passed to a Perl script, and JavaScript’s main role
lies in preprocessing the variables in the forms.

Getting Started

You will need a hosting service that provides you with access to CGI and a Perl
interpreter. The examples used for this book were done using JTLNet as a hosting
service (www.jtlnet.com), and you will find them to have everything you need
for simple access for CGI. If you already have a hosting service, it should be

capable of showing you how to set up and use CGI. If your service does not allow
CGI, get another hosting service that does. You can find plenty of high-quality
services for less than $8 per month.

When you get squared away with a hosting service, you will need to know where
to store your CGI scripts written in Perl. Usually, the name of the folder (directory)
where you put your scripts is cgi-bin. Use your favorite FTP program to place your
Perl scripts in the cgi-bin directory using ASCII (not binary) transfer. You will find
it in the root HTML directory, which is usually named something like public_html.
The path to your Perl scripts, which end with the extension .pl, would be as
follows:

http://www.domain.com/cgi-bin/scriptName.pl

The directory public_html (or whatever the root HTML directory is called) is not
named in the path because it is the root for your domain for HTML.

chmod

Unlike PHP or ASP pages, CGI scripts need to be configured when they are on the
server in the cgi-bin folder. The UNIX command chmod changes the permission for
each Perl file that you want to execute. (In other words, all your Perl files need to
be configured.) Within a UNIX shell, the command to configure your script is this:

chmod 755 scriptName.pl

If you’re using a typical Windows or Macintosh OS computer, you will need
another way to set the permissions. You need an FTP application that can issue a
chmod command or set the permission parameters in some other way. Both PCs
and Macs have plenty of FTP programs that will do that. A popular FTP program
for Windows is called CuteFTP (www.cuteftp.com), and it has its own chmod
command built into a drop-down menu. You simply select the file that is on the
server that you want to configure and select Commands, File Actions, CHMOD;
then enter the 755 code in the Manual window. On the Mac side, the popular
Fetch FTP program has a permissions option that you can set without having to
write the chmod command. Selecting Remote, Set Permissions, you select all of
the permission options except Group and Everyone Write. Figure 16.1 shows how
it looks when completed for the 755 chmod setting.

Figure 16.1. You can click the permission options to the
equivalent of a chmod command with some FTP

applications.

A Quick Script

To get a quick overview of a running CGI script written in Perl, the following set
of steps takes you through the sequence that you will need to get a working
script:

1. Open up your favorite text editor. For the purposes of this book and most
Perl applications with CGI pages, you begin all Perl scripts with this:

2.
#!/usr/bin/perl

3. Because you will be writing Perl scripts in pages that will generally go to
the web, you will need another generic line of code:

4.
print "Content-type:text/html\n\n";

The line does not print to the screen, but it will make the rest of the code
do so.

5. Next, for output, you use a print statement to send a message to the
screen. Just as in JavaScript, lines terminate with a semicolon, except that
in Perl ending semicolons are not optional. You have to include them. (The
\n simply puts a new line in the source of the HTML file.)

6.
print "I like JavaScript and Perl.\n";

7. Tell the parser that you’ve reached the end using the exit statement.
8.

exit;

9. At this point, the script is done and should look like the following:
10.
11. #!/usr/bin/perl
12. print "Content-type:text/html\n\n";
13. print "I like JavaScript and Perl.\n";

exit;

Save it as perlOne.pl.

14. Using an FTP program, place perlOne.pl in your cgi-bin directory (or your
hosting service’s equivalent).

15. When it is in the cgi-bin folder, select the file and, using the chmod
command or permission matrix, configure the file to chmod 755.

16. Open your browser and, in the URL window, type in the following,
substituting your own domain name:

17.
http://www.domain.com/cgi-bin/perlOne.pl

On the screen, you should see

I like JavaScript and Perl

Other than having to initialize the script using chmod and adding the line for web
pages, the process is not unlike loading a JavaScript file onto a server.

A Brief Perl Tutorial

JavaScript and Perl have some common features in terms of general structure,
but Perl is unique and very powerful. One of the more powerful structures within
Perl is a pattern-matching feature called regular expressions. JavaScript, too, has
regular expressions; by comparing the two, you can learn about both. However,
before getting to regular expressions, a quick overview of Perl is in order.

Unique Variable Characters of Perl

Perl distinguishes between different types of variables using a set of symbols with
their own names. They include the following:

• $ Scalar: a single number or string
• @ Array: a multiple-item variable
• % Hash: a paired array

A scalar is similar to a plain-vanilla variable in JavaScript.

Scalar Variables

The scalar variables in Perl look a lot like variables in PHP because they begin
with a dollar sign. In Perl, they are simply variables with a single value. (In some
versions of Basic, all string variables begin with dollar signs, but both strings and
nonstrings can be Perl scalar variables.) The following are examples of scalar
variables—note that they include strings and numbers:

$subtotal = 22.33;
$membership=453;
$customer="Linda Sheppard";

One of the advantages of having identifying characters at the beginning of
variables in Perl is that they can be put inside a literal without any special set of
quotes or concatenation.

$meetingTotal=64;
$report="The meeting was attended by $meetingTotal last week.";

The advantage of not having to fiddle around with concatenation turns into a
disadvantage when you are faced with having to use one of the variable
characters such as the dollar sign ($). As in JavaScript, the dollar sign can be
“escaped” by using a backslash. For example, the following variable assignment
uses an escaped dollar sign:

$total="\$23.33";
print $total;

The output would be $23.33.

Arrays and Hashes

An array in Perl can be remembered by the @ symbol (“at” sign for “array”—get
it?). An array is declared by typing in the array name followed by the list of array
elements in parentheses. For example, the following array contains several types
of dogs:

@dogs = ("lab","sheltie","Swissy","mutt");

If you wanted to print out Swissy, you would enter this:

print $dogs[2];

At first glance, the print command looks like a typo, but it’s not. In Perl, you use
a scalar variable to access the elements of an array. All of the elements must be
stated as follows:

$arrayName[n];

Because Perl variables are conceived of as singularities or pluralities, it makes
sense to reference single elements of an array using the array name but a scalar
symbol.

A unique variable format in Perl is the hash. Hashes are paired elements in an
array or associative arrays. Hashes have two formats. The first format looks like
an array, but the second is clearly descriptive:

%dogs = ("lab", "Labrador Retriever", "Berner", "Bernese Mountain
Dog", "Swissy",
"Greater Swiss Mountain Dog");

The first element is associated with the second, the third with the fourth, and so
on. A clearer way of presenting the same hash follows:

%dogs= (

"lab" => "Labrador Retriever",
"Berner"=> "Bernese Mountain Dog",
"Swissy"=> "Greater Swiss Mountain Dog",
);

When you have your data in a hash, how do you get it out? By referencing the
first of an associative pair, you get the second of the two. The format is

$hashName{"FirstElementOfPair"};

Your return is the second element in a hash pair. For example, using the dog
example hash, if you typed this:

print $dogs{"Berner"};

your screen would show

Bernese Mountain Dog

Using the hash structure is handy when you have associative pairs and can
reference one for the other.

Perl Comments

Comments in Perl are prefaced by pound signs (#). As in JavaScript, comments
can be put on separate lines or in lines with other code. The following examples
show how they can be used:

$alpha="News"; #This is a scalar variable.
@happy=("glad", "exuberant", "cheerful", "blithe"); #Synonyms for
happy;
#All comments are ignored by parser.

Perl Operators

Perl operators, for the most part, are identical to those in JavaScript, with some
notable exceptions. First, numeric and string comparison operators are different.
This difference can be very frustrating after using JavaScript because it’s easy to
forget and use the wrong one. For example, the following script shows the correct
way to use numeric and string operators:

$alpha="Apples";
$omega="Oranges";
if($alpha ne $omega) { #Uses a string comparison
 print "They are different \n\n";
 }

The common error in Perl occurs when the programmer uses a line like this when
both scalar variables are strings:

if($alpha != $omega) { #Wrong!

So, when you write conditional statements in Perl, which are the same as in
JavaScript, watch out for mixing string and numeric comparison operators. Table
16.1 shows the main operators in Perl. (File test operators are not included.)

Table 16.1. String and Numeric Operators in Perl
Operator Use Format Example
= Assignment $inven =832;

+ Add $total = $item + $tax + $shipping;

- Subtract $discount = $regPrice - $salePrice

* Multiply $itemTotal = $item * $units;

/ Divide $distrib = $all / $part;

== Compare evaluation if ($quarter1 == $quarter2)

!= Not equal to if (999 != $little) {

> Greater than if ($elephant > $mouse) {

< Less than if ($subTotal < 85) {

>= Greater than or equal to if ($counter >= 200) {

<= Less than or equal to if (300 <= $fullAmount) {

<=> Comparison $alpha=($beta <=> $delta);

eq String compare evaluation if ($Bob eq $Ben) {

ne String not equal to if ($big ne $little) {

lt String less than if ($art lt $science) {

gt String greater than if ("Big" gt "Tiny") {

le String less than or equal to if ("Apes" lt "Zebras") {

ge String greater than or equal
to

If ($first ge "Last") {

cmp String comparison $beta="dogs" cmp "cats";

+= Compound assign add $total += 21;

-= Compound assign subtract $discount -= (.20 * $item);

. Concatenation $wholeName = $firstName.$lastName;

.= Compound concatenation $areaCode .= $phone

&& Logical AND if ($first == 97 && $second <=
$third) {

|| Logical OR if ($high === 22 || $low == 12){

++ Increment (pre or post) for ($la=6; $la <=78; ++$la)

-- Decrement (pre or post) for ($ls=50; $ls >=12; $ls--)

Perl Statements

This brief section covers the main Perl statements and structures that you will use
in a typical CGI page. Most of the statements work the same as they do in
JavaScript, but the variables must be prefaced with the correct symbols, and
some of the formats might be slightly different.

Output

As you have seen in examples in this chapter, the print statement seems to be
the most common output statement. It is. Three key types of print statements
will help you get started in Perl with CGI:

• Print literal: print "Hamster \n\n";
• Print variable: print $bigshot;
• Print HTML: print " Tough ";

A print statement that outputs HTML tags such as is really a formatting
technique in CGI, just as using the backslash with n (\n) is formatting code.

When printing with variables and HTML tags, you can place the variable right in
the middle of a print statement in quotation marks, and the variable is still
recognized as such. For example, this next script segment would print She is
bold and beautiful in boldface type:

$ugly = "beautiful";
print "She is bold and $ugly .";

Conditional Statements

Perl’s conditional structures are very similar to those in JavaScript. The if, if /
else, and if / elsif / else statements are almost identical, except that the key
word elsif is spelled without an e. The following shows some conditional
statements in a Perl script:

#!/usr/bin/perl
print "Content-type:text/html\n\n";
$alpha="Angels";
$beta="clouds";
$gamma="sky";
if (($alpha ne $beta) && ($gamma gt $beta)) {
 print "$alpha live in $beta up in the $gamma .";
 } else {
 print "Where did all the angels go?";
 }
exit;

A big difference between Perl and JavaScript in conditional statements is that you
must remember to use the numeric and string comparison operators correctly. In
the previous example, note that the operators ne and gt were used instead of !=
and >, as would be done in JavaScript.

A different conditional structure that you will find in Perl but not JavaScript is the
unless statement. It is the opposite of the if statement. When the condition is
not true, the statement in the unless conditional executes, as the following
shows:

#!/usr/bin/perl
print "Content-type:text/html\n\n";

$myDog="WillDe";
$goodDog="WillDe";
unless($myDog ne $goodDog) {
 print "Sit. Stay. Play the piano."; #This will appear on the
screen.
 }
exit;

When going through a list of choices, each with a different outcome, use elsif.
With CGI, this could be a common occurrence because several different values
could be pulled out of a data file. The following example shows how elsif could
be employed:

#!/usr/bin/perl
print "Content-type:text/html\n\n";
$nmLast="Smith";
$nmFirst="Karen";
if($nmLast eq "Smith" && $nmFirst eq "Ed") {
 print "Hi Ed! How\'s the Smith family?";
 }
elsif ($nmLast eq "Smith" && $nmFirst eq "Jacqueline") {
 print "Hi Jackie! How\'s the Smith Flower Shop doing?";
 }
elsif ($nmLast eq "Smith" && $nmFirst eq "Ralph") {
 print "Hi Ralph! Congratulations on early parole!";
} else {
 print "Gee, I don\'t think we\'ve met. Would you like to
register with our
 site?";
}
exit;

In the example, the values for the two variables were assigned. However, the
same script could be used if pulling data out of a text-data file.

Loops

Loops are important in Perl for searching through data files, as you will see in the
next section. Loops in Perl and JavaScript share a good deal in common but, as
with conditionals, you will see differences as well. The for loop has the same
structure as the for loop in JavaScript:

for($counter;$counter < $min;$counter++) {
 statements…
 }

Instead of using the for keyword, you can substitute foreach. They work
identically, but one of the two might be clearer. For example, the following goes
through a list and prints it to the screen:

#!/usr/bin/perl
print "Content-type:text/html\n\n";
foreach $customer("Tom","Dick","Harry") {
 print "$customer
";

}
exit;

The for statement could just as well have been used in the previous script, but
the foreach keyword seems a little clearer in the context of going through the list
of names. It also shows a very different loop construct than would be found in
JavaScript. Each of the values in the variable is brought out almost like an array.
However, as you can see, no array is declared.

The while loop in Perl is about the same as it is in JavaScript. The top of the loop
contains the termination condition, and while that condition is not met, the loop
iterates. The following is a simple generic example:

while ($counter < 10) {
 print "Give me some JavaScript
";
 $counter++;
 }

The until loop waits until a certain condition is met, looping until it is met. Note
the differences between the following (until) and previous (while) script
segments.

until ($counter == 10) {
 print " Give me some JavaScript
";
 $counter++;
 }

vFile Handling in Perl

One of Perl’s attractions to designers is its capability to read and write text files.
The attraction lies in the fact that designers can design their sites without having
to set up a database (such as Access or MySQL) to store data. However,
compared to PHP and ASP, in which the files are sophisticated relational
databases, the files can be simple, plain-vanilla text files in a CGI page and Perl—
the kind you can create with Notepad or SimpleText. To get started, create a
simple text file using Notepad, SimpleText, or your favorite text editor. Begin by
creating a list of names, separated by commas, and save them as a text file
named customers.txt, as in the following list:

Lisa,Marge,Homer,Bart,Maggie,Ned,Mo

Place your text file on the server in the cgi-bin directory. Then, using CHMOD,
initialize the file using 666 as the type. (With CHMOD 666, the owner, group, and
everyone have read and write permissions, but none has the search/execute
permission.) Next, type in the following script and save it as readData.pl:

#!/usr/bin/perl
print “Content-type:text/html\n\n”;
open(CUS,”customers.txt”); #Open the file using CUS to identify
the file
@cusList=<CUS>; #Put the file contents into an array
print @cusList;

 #Show on the screen what is in the file
close(CUS); #Close the file
exit;

After you have saved the file, put it into the same cgi-bin directory as the text file.
Initialize readData.pl with CHMOD 755, and then open your browser and execute
the script. You will see exactly what you put into the text file.

Now that you can see how easy it is to read and display the contents of a text file
using Perl in a CGI page, you need to understand some very basic Perl
statements and structures behind the process.

The open Function

The open function in Perl requires, at a minimum, only two arguments—a file
reference name and the actual file’s URL. The file reference name (filehandle) can
be any name that you want, and it works like a nickname for the actual file. The
basic format is the following:

open(fileHandle, "fileName.xxx");

When both the CGI page and the data file are in the cgi-bin directory, the URL is
simply a filename, as shown in the example in the previous section. The file
reference name or filehandle is conventionally capitalized; if you prefer, you can
use the program’s normal input channel name, STDIN. However, generally, you
want to have a filehandle that is somehow associated with the file’s contents or
name.

When you open a file using Perl, you have three key options (among others):

• Read the file:
•

Open(MYFILE, "fileName")

• Create a file and write to it:
•

Open(MYFILE, ">fileName")

• Append an existing file:
•

Open(MYFILE, ">>fileName")

Using write and append

Writing to a new file or appending an existing one is quite simple with Perl.
Keeping in mind that most users will be appending existing files rather than
creating new ones, the following two examples show the steps in first creating a
new file and then appending the file. The sample file is a corporate one for the
names and duties of personnel in an organization. Later, in using a single
separator, a space, Perl will reformat the string for a clear output to the screen.

1. Create a text file and save it as posData.txt, but do not put anything in the
file. Place the file into the cgi-bin directory, and initialize it with CHMOD 666.

2. Create a file to write data to the posData.txt file using the following script.
(If you substitute names and positions in the $name or $job variable, be
sure to keep any spaces out of the name or position. Use underscores [_]
to connect the names or dashes [-] for the job title to create a string with
no spaces.)

3.
4. #!/usr/bin/perl
5. print "Content-type:text/html\n\n";
6. $name="Daniel_Gonzalez";
7. $job="programmer";
8. open(JOBS,">posData.txt");
9. #Include one space after $name and $job.
10. #The first print goes to the file, not the screen.
11. print JOBS "$name $job ";
12. close(JOBS);
13. #The second print goes to the screen.
14. print "Data added to file.";

exit;

Save the file as write.pl, and put it into the cgi-bin directory. Initialize it
with CHMOD 755. Test the script in your browser. After you have
successfully launched the script, check the text file posData.txt. You
should see this in the file:

Daniel_Gonzalez programmer

15. The append script is identical except for the values of the strings and the
double arrow-bracket in the open function:

16.
17. #!/usr/bin/perl
18. print "Content-type:text/html\n\n";
19. $name="Nancy_Rogers";
20. $job="marketing-manager";
21. open(JOBS,">>posData.txt");
22. #Include one space after $name and $job.
23. #The first print goes to the file, not the screen.
24. print JOBS "$name $job ";
25. close(JOBS);
26. #The second print goes to the screen.
27. print "Data appended to file.";

exit;

Save the script as append.pl, move it to the cgi-bin directory, and initialize
it with CHMOD 755. Run the script in your browser. Again, open the
posData.txt file in cgi-bin. This time you should see the following:

Daniel_Gonzalez programmer Nancy_Rogers marketing-manager

Having seen how to read files and write and append them using Perl and CGI, the
next step is to read the files created with write and append and format the
output. This last step is what Perl does well using very powerful pattern-
recognition operators and functions. The next section examines Perl’s regular
expressions and pattern matching but, at this point, only the most simple
formatting will be used, in an effort to clarify the process of formatting data with
Perl.

Formatting with the split() Function

One of Perl’s built-in functions, split(), can be used to divide up a string into
multiple substrings. These substrings then are placed into an array and formatted
for output. The general split() format used in the next example to cut up a
string into array elements and place them into an array is as follows:

@arrayName = split(/character/,$stringName)

Basically, split() chops up the string along the lines that you specify in the
pattern matching (character between the two slashes). Each array element is
stripped of the matched character so that each element contains the substring
between the matched characters. Because the data entered in the previous write
and append examples used a space to separate both the name and the position,
the names and positions are disconnected substrings. However, because the
substrings (or elements in the array) contain names and positions in order of
their connection to one another, by taking every other element in the array, it is
possible to format and output them in a way that is connected. Try out the
following script, and afterward go through the script analysis.

format.pl
#!/usr/bin/perl
print "Content-type:text/html\n\n";
open(POS,"posData.txt");
#Place the data into a scalar variable ($posn).
$posn=<POS>;
#Use the split function to divide up the parts by spaces (/ /) to be
placed in an array.
(@posnS).
@posnS=split(/ /,$posn);
#Step through every other element in array to group output by name
and position.
for($i=0;$i<=$#posnS;$i+=2) {
 #Replace underscores and dashes with spaces.
 $posnS[$i] =~ tr/_/ /;
 $posnS[$i+1] =~ tr/-/ /;
 print "$posnS[$i] position title is > $posnS[$i+1]
";
 }
close(POS);
exit;

Save the script, put the script file into the cgi-bin directory, and initialize it with
CHMOD 755. When you run it from your browser, you will see this:

Daniel_Gonzalez position title is > programmer
Nancy_Rogers position title is > marketing-manager

As you append more names and positions, the output automatically will format it
in this order and arrangement, adding new entries to the bottom of the list.

In looking at the script, the key points are in the lines that split the string and put
it into an array, and the loop that pulls out the array elements and puts them on
the screen. The first of these two key script lines is

@posnS=split(/ /,$posn);

The array @posS is made up of the scalar variable $posn, cut up into substrings at
the split character. A blank space between the two slashes means that a blank
space is the character where the string is cut up into substrings.

After the big string is broken into substrings and placed into an array, the next
task is to pull each element out of the array and provide a format for output. In
this case, a loop is used:

for($i=0;$i<=$#posnS;$i+=2) {
 print "$posnS[$i] position title is > $posnS[$i+1]
";
 $posnS[$i] =~ tr/_/ /;
 $posnS[$i+1] =~ tr/-/ /;
 }

The general way to find the length of an array minus 1 is to use this statement:

$#arrayName

To find the length of the array of @posnS for the termination condition in the for
loop, use the statement $#posnS. The increment is set to 2 because the names
are going to appear in only every other element. This expression does the trick
for you:

$i += 2

Because the position follows the names, it is the next element value. Thus, the
position is acquired by this expression:

$posnS[$i+1]

A line break tag
 is placed after the position to create an orderly list.

Regular Expressions

The sine qua non of Perl is its regular expressions. Regular expressions are the
codes used to specify a pattern that is to be matched with data. In the previous
script used with the split() function, the regular expression operators / /
looked for a matching space in the data. All patterns in Perl express a pattern by
placing the pattern between two slashes. For example, the following are all
legitimate patterns in regular expressions:

/55/
/word/
/The stuff that dreams are made of/

The pattern matches if the string between the slashes matches a substring (a
string segment) in the comparison data.

When you need to find several different matching strings, use the vertical bar
(“pipe”) character to separate the search elements. For example, the following
has four patterns that can be matched with the data:

/honesty|integrity|persistence|wisdom/

Some Fundamental Operators in Regular
Expressions

Perl has a number of different operators that can be used in regular expressions,
but the most basic are the following:

• =~ Contains (matches)
• !~ Doesn’t contain (doesn’t match)

The matches work on a Boolean principle and are evaluated as true or false. As
a result, you will find them used extensively in conditional statements. For
example, the following conditional script looks to see whether a compound match
exists and branches a certain way, depending on the outcome:

#!/usr/bin/perl
print "Content-type:text/html\n\n";
$application="some experience low scores";
if ($application =~ /experience|high scores/) {
 print "You're hired!";
} else {
 print "We'll let you know.";
 }
exit;

The script compares the string $application with the match pattern. Because
the word experience is contained in the string and the pattern, the expression
evaluates as true.

You can also use regular expressions to substitute one substring for another. The
format is

$stringName =~ s/oldString/newString/

The oldString pattern is sought in the string ($stringName) and, if found, the
newString replaces the oldString substring. The following example illustrates
one use of substitution:

#!/usr/bin/perl
print "Content-type:text/html\n\n";
$thankYou="Thank you for your gift.";
$amount=200;
if($amount > 150) {
 $thankYou=~ s/gift./generous gift!/;
 }
print "$thankYou";
exit;

If you want to substitute one character for another, use this format:

tr/oldCharacter/newCharacter/

The only difference between using tr/// (transliteration) and s/// is that tr///
scans a string one character at a time. However, you can put in ranges of
characters, such as

tr/a-p/A-P/

Here, all lowercase characters in the range from a to p will be capitalized.

Perl also has pattern modifiers. The most important for designers might be the
non–case-sensitive modifier /i. By placing the /i modifier at the end of a pattern,
the letter cases will be ignored. For example, the following script excerpt would
result in a match:

$bigshot = "HOT STUFF";
if($bigshot =~ /hot/i) {….

In most instances, Perl is case-sensitive, so, without having the capability to
ignore cases in a match, you’d have a good deal more coding to make sure that a
match was not ignored because of case.

Passing Data to CGI from HTML

In the previous sections in this chapter, you saw how to place data into a data file
and how to pull it out and format it for the screen (format.pl). Using an HTML
form and JavaScript, you can create a page that makes it easy to enter the data
that you want and have it written to a text file stored in cgi-bin. You can also use
JavaScript to help you preformat the data so that it will be easier to pull out and
format using Perl.

Setting Up the Front End

The “front end” is where the user interfaces with the data. She enters the data,
and it is passed to a CGI page and then written to a text file in a specific format.
The interface also should have a means to read the data in the file. Thus, you will
probably want to use frames. One frame will be used for data entry and providing
buttons to read the data. The other frame is used for displaying data from the
text file. A common external CSS file uses a French color pattern from Leslie
Cabarga’s Designer’s Guide to Global Color Combinations (North Light Books,
2001).

filePass.css
h2 {
text-align:center;
 font-size:18pt;
 font-family:verdana;
 color:#e00021;
 background-color:#b8bab9;
 font-weight:bold

 }
#labels {
font-family:verdana;
 color:#b8bab9;
 background-color:983094;
 font-size:11pt;
 font-weight:bold
 }
a {
 font-family:verdana;
 color:#b8bab9;
 background-color:983094;
 font-size:11pt;
 font-weight:bold;
 text-decoration:none
 }

Next, you need to set up the frameset. With only two frames, the task is an easy
one.

dataSet.html
<html>
<frameset cols="*,*" frameborder=0, border=0>
<frame name="dataIn" src="appendData.html" frameborder=0 border=0>
<frame name="dataOut" src="showData.html" frameborder=0 border=0>
</frameset>
</html>

The next segment of the front end is the core. It uses JavaScript to help format
the data. Usually, some kind of verification would be included in the JavaScript as
well, but, in this example, I wanted to focus on formatting text. The first
JavaScript function simply adds an underscore character to link the first and last
names. The second function looks for a space between any words in the window
and places a dash between them, if one is found. Note how a regular expression,
very much like the ones in Perl, is used in the second JavaScript function to add a
dash (-) where any spaces exist. One of the two Perl scripts that accompanies
this set called (format.pl) was used previously in this chapter. The JavaScript
formatting sets up the data sent to the CGI page so that the format.pl script can
be used again.

<html>
<head>
<link rel="stylesheet" href="filePass.css" type="text/css">
<title>Append Data to an existing data file </title>
<script language="JavaScript">
function addUS() {
 var firstForm=document.top;
 var secondForm=document.bottom;
 var fullName=firstForm.fName.value + "_" +
firstForm.lName.value + " ";
 secondForm.wName.value=fullName;
 }
function checkPos() {
 var t= document.top;
 var b=document.bottom;
 var spacer=t.position.value;
 //Use a regular expression to swap spaces for dashes
 var fixer= spacer.replace(/ /g,"-");

 b.positionF.value=fixer;
 }
//Put both functions together into a whole
function fixAll() {
addUS();
checkPos();
}
</script>
</head>
<body onLoad="document.forms[0].reset()" bgColor="#528490">
<h2>Fill in the form with your name and position.</h2>
 <div ID="labels">
<form name="top">
 Enter first and last names:

 <input type=text name="fName">
 <input type=text name="lName">

 Enter your position:

 <input type=text name="position">
</form>
</div>
<form name="bottom" method=POST
action="http://www.sandlight.com/cgibin/
formAppend.pl"onSubmit="fixl ()" target="dataOut">
 <input type=hidden name="wName">
 <input type=hidden name="positionF">
 <input type=submit>
</form><p>
<a href="http://www.sandlight.com/cgi-bin/format.pl"
target="dataOut">View Data
</p>
</body>
</html>

The two functions preprocess the data and store it in the second, hidden form.
The data in the hidden form are sent to the CGI page. Before explaining what
happens in the CGI page, the frameset needs to be completed with a “holding
page” for the data that will appear in the frame later.

showData.html
<html>
<head>
<link rel="stylesheet" href="filePass.css" type="text/css">
</head>
<body bgcolor="#983094">
<h2>Data appears in this window:</h2>
</body>
</html>

That’s all of the front end that has to be created. However, you must think of
front ends and back ends always working together. So, the back end or server-
side script in Perl must be matched to the type of data and method (POST or GET)
used to send the data. This next section explains how things work on the CGI end
of the equation.

Front-End and Back-End Connections: Interpreting
Form Data in Perl

When you use a form to send data, it can be sent using the POST or GET methods.
When data are sent using GET, this line places the data into a scalar variable:

$data=$ENV{'QUERY_STRING'};

If, as has been done in this example, your method is POST, you use this line to
place data into a specified scalar variable:

read(STDIN, $data, $ENV{'CONTENT_LENGTH'});

(In this example, $data is used, but you can use any name you want.)

Because POST was used, the second of the two standard remote “data-catching”
lines was employed in the script. The web sends a big hash called %ENV to CGI
when a CGI script executes. All environmental variables are stored in the hash,
and the line $ENV{'CONTENT_LENGTH'} specifies which environmental variable to
use—in this case, CONTENT_LENGTH.

STDIN is a keyword in Perl for “standard input,” and it specifies the standard input
channel used to send data to a CGI script. So, basically, the line channels in data
in the POST format and drops it into a scalar variable of your choice. Whether
your form has 1 or 100 windows of data, all that Perl sees is one big string to
make sense of. That’s what will be stored in $data (or whatever name you use
for a scalar variable).

Using the input line to extract data sent from an HTML form, the rest of the work
for the Perl script is to format it using regular expressions for storage in a text file.
This next script does exactly that:

#!/usr/bin/perl
print "Content-type:text/html\n\n";
read(STDIN, $fromPost, $ENV{'CONTENT_LENGTH'});
open(JOBS,">>posData.txt");
#Data from form is stripped of input names
$fromPost =~ s/wName=//;
$fromPost =~ s/\+&positionF=/ /;
$fromPost .= " ";
#Data is sent to text file using print statement
print JOBS "$fromPost";
close(JOBS);
#Let the viewer know the data are appended.
print "Data appended to file.";
exit;

NOTE

As soon as you write to a file, it clears all the records from the file. Therefore, you
want to have some kind of existing file to append data to. The easiest way is to

create an empty text file, save it in the cgi-bin directory, and use CHMOD 666 to
initialize it. Then the file can be appended indefinitely.

Special characters are used to separate the form names when sent from the
HTML form to the CGI page. Depending on the input form element names you
used, you will be stripping different names than the ones shown previously.
However, it is advisable to keep your form name short and clear when dealing
with CGI pages, to make it easy on yourself when removing them from the data.

To finish up, all you need to do is to call on the script format.pl that was used in a
previous section. (See the earlier section “Formatting with the split() Function.”)
It will read the data and present it in the right window of the frameset. Figure
16.2 shows the pages displayed in a browser window.

Figure 16.2. JavaScript, HTML, CGI, and Perl work well
together.

Summary

JavaScript plays a secondary role between forms and CGI pages, but it can be an
excellent preprocessor for use with CGI scripts. Besides being used for verification,
JavaScript can be used for preformatting data to be sent to a CGI script for
placement into data files. The preformatting can make it easier to create a script
that will store and retrieve the data for clearly formatted display.

Perl is a very rich language, and this chapter has just scratched the surface of
working with CGI and Perl. Several good books on Perl and CGI are available, and
the third edition of Programming Perl (O’Reilly, 2000) is a thorough resource for
learning much more about Perl and its relationship to CGI and HTML. The wide
range of regular expressions in Perl helps to understand and fully use regular
expressions in JavaScript as well.

Chapter 17. Working with XML and
JavaScript

CONTENTS>>

• The XML Mystique
• What is XML?
• Reading and Showing XML Data with JavaScript

The XML Mystique

The Extensible Markup Language (XML) is one of those languages that you hear a
lot about, and generally in the superlative, but not too many people are exactly
sure what it is. At this point in time, both Netscape Navigator and Internet
Explorer are on the verge of fully connecting JavaScript and XML using the W3C
Document Object Model (DOM). Because the HTML, JavaScript, and XML DOMs
are beginning to form around the same object model, you can better understand
where JavaScript and HTML are headed by understanding XML.

Microsoft has provided one way of examining XML documents with IE5+ using
platform-specific keywords on Windows platforms. As both NN6 and IE6 mature,
working with XML will not require a separate module to load XML. So, even
though limited to the Windows platform and IE5+ browser, you can see how
JavaScript can be used to pull data out of an XML file and display it on the screen.

If you have ever seen stockbrokers at work on Wall Street, you might have
noticed that they have several computers and monitors. What you are seeing is
actually different databases being sent over different proprietary systems.
Instead of needing different systems for each database, XML can put any
database into a format that can be read by any computer with the right browser.
At this point in time, XML is ahead of the browsers.

Because this single chapter is a scratch on the surface of XML, I highly
recommend a more thorough treatment of the topic. Inside XML, by Steven
Holzner (New Riders, 2001), is an excellent source of XML and has a great
chapter on using JavaScript with XML. Mr. Holzner’s book has more than 1000
pages that look into just about every nook and cranny of XML, and it is well worth
taking a look at.

What Is XML?

XML organizes and structures data for the web. In many ways, it is like a
database; in others, it is like a text file storing data. However, XML looks a lot like
an HTML page as well, but with no built-in formatting tags. XML tags only order
data. All of the tag names in XML are ones provided by the designer. For most
XML pages, you can determine approximately what the structure is by examining
the file. The following page is an example:

<?xml version="1.0" ?>
<writers>
 <pen>
 <name>Jane Austin</name>
 </pen>

 <pen>
 <name>Rex Stout</name>
 </pen>
</writers>

You can write this document in your favorite text editor, such as Notepad in
Windows or SimpleText on the Macintosh. Save it as writers.xml. (All XML
documents can be written and saved as text files.) If you load the XML page into
IE5+ or NN6+, you will see this:

Jane Austin Rex Stout

XML is for structuring data, not formatting it, and you need something to show
that data in a useful way. Most developers use Cascading Style Sheets (CSS). For
example, the following CSS script provides formatting in the form of an 11-point
bold navy Verdana font for the data in the XML file:

name {
 display:block;
 font-size: 14pt;
 color: navy;
 font-weight: bold
 }

By saving the file as an external style sheet named scribe.css, you can use it to
format the elements with the tag label name. Note that name is not a dot-defined
class or an ID. It is the name of the label in the XML script.

XMLsee.xml
<?xml version="1.0" ?>
<?xml-stylesheet type="text/css" href="scribe.css" ?>
<writers>
 <pen>
 <name>Jane Austin</name>
 </pen>
 <pen>
 <name>Rex Stout</name>
 </pen>
</writers>

The output is now formatted, and your screen shows this:

Jane Austin
Red Stout

You can use the same style sheet with your HTML/JavaScript pages as you do
with XML. However, in creating the style sheet, this line in the CSS script has the
effect of blocking the text on separate lines:

display: block;

The Rules of Writing XML

XML is a markup language that uses tags, like HTML, but you will find many
differences as well. The following list shows what you must be aware of in
creating XML files:

• The user defines the element names. (An opening and closing tag
constitute an element: <pen>…</pen>.) XML has no formatting tags of its
own.

• Internet Explorer 5+ and Netscape Navigator 6+ are required for
displaying XML in a browser. Older browsers cannot display XML.

• Like JavaScript, XML is case-sensitive. The tag <Pen> is not the same as
<pen>.

• All XML elements are containers and must have closing tags (for example,
<pen> and </pen>). You could not have <p> without </p>, as with HTML.

• Each XML element requires a document type definition (DTD) or schema to
be well formed.

• An element in XML is a self-contained mini-XML document.

Declaring an XML Document

To create an XML document, you need to first declare the document as an XML
document. You do so with the following line:

<?xml version="1.0" ?>

You can add more information for different languages, but for the purposes at
hand, just start off your XML scripts with this single line.

The Root Element

Following the XML document declaration, you need a root declaration. The root
element encompasses everything that you put into the XML document. The other
elements must be between the tags identifying the beginning and end of your
root element. In the XML example that we’ve been using, the root element is
<writers>. (Note that the comment tags are the same as those used in HTML.)

<?xml version="1.0" ?>
<!--First the root element -->
<writers>
<!--Rest of the tags between the opening and closing root tags -->
</writers>

The root element is important because it is a reference point used by JavaScript
to identify the hierarchy that leads to different child elements.

Filling in the Root

The parent-child relationship in XML is one of containers. The root element
contains child elements. If one of the root’s child elements contains a container, it
is the parent of the contained tags yet still the child of the root element.

<root> Parent to all elements
 <child> Child of <root> Parent of <grandchild> elements
 <grandchild>Dashiell Hammett</grandchild> Child of
<child>
 <grandchild>Toni Morrison</grandchild> Child of
<child>
 </child>
</root>

The <root> element is the parent of all, and the <child> element is the child of
the root element and parent of both of the <grandchild> elements. The two
<grandchild> elements are siblings. In the JavaScript DOM objects, you will see
methods referring to child, parent, and sibling; these methods address the set of
parent and child elements references.

Reading and Showing XML Data with JavaScript

As noted previously, Version 6 JavaScript browsers seem to be coming together
over the W3C DOM. Several key methods and properties in JavaScript can help in
getting information from an XML file. In the section, a very simple XML file is used
to demonstrate pulling data from XML into an HTML page using JavaScript to
parse (interpret) the XML file. Unfortunately, the examples are limited to using
IE5+ on Windows. (The same programs that worked fine using IE5+ on Windows
bombed using IE5+ on the Mac using either OS 9+ or OS X.)

However, the great majority of keywords used in the scripts are W3C DOM–
compliant, and the only keywords required from the Microsoft-unique set are
XMLdocument and document.all(). All of the other keywords are found in NN6+.
Table 17.1 shows the W3C JavaScript keywords used in relationship to the XML
file examples.

Table 17.1. Selected Element Keywords in JavaScript
Property Meaning

documentElement Returns the root element of the document
firstChild Is the first element within another element (the first

child of the current node)
lastChild Is the last element within another element (the last child

of the current node)
nextSibling Is the next element in the same nested level as the

current one
previousSibling Is the previous element in the same nested level as the

current one
nodeValue Is the value of a document element

Method Meaning
getElementsByTagName Used to place all elements into an object

Finding Children

To see how to pull data from an XML file, all examples use the following XML file.
The intentional simplicity of the XML file is to help clarify using JavaScript with

XML and does not represent a sophisticated example of storing data in XML
format.

writers.xml
<?xml version="1.0" ?>
<writers>
 <EnglishLanguage>
 <fiction>
 <pen>
 <name>Jane Austin</name>
 <name>Rex Stout</name>
 <name>Dashiell Hammett</name>
 </pen>
 </fiction>
 </EnglishLanguage>
</writers>

The XML file contains a typical arrangement of data using a level of categories
that you might find in a bookstore or library arrangement. It is meant to be
intuitively clear, as is all XML.

The trick in all of the following scripts is to understand how to find exactly what
you want. The first three scripts that follow use slightly different functions to find
the first child, last child, and sibling elements. The first script provides the entire
listing, and the second two just show the key JavaScript function within the script.
They all use the following common CSS file.

readXML.css
body {
 font-family:verdana;
 color:#ff4d00;
 font-size:14pt;
 font-weight:bold;
 background-color:#678395;
}
div {background-color:#c1d4cc;}
#blueBack {background-color:#c1d4cc}

To read the first child of an element, the reference is to document.firstChild.
Given the simplicity of the sample XML file (writers.xml), the script just keeps
adding . firstChild to each of the elements as it makes its way to the place in
the XML file where the information with the data can be found.

However, before even going after the first child of the <name> element, the HTML
page sets up a connection to the XML page using an <xml> container understood
by Internet Explorer 5+ in a Windows context. (At the time of this writing, IE6
was available, and it worked fine with the following scripts, but only on a
Windows PC.) The ID writersXML is defined as the XML object first, and then it
becomes part of a document, myXML, in this line:

myXML= document.all("writersXML").XMLDocument

The document.all().XMLDocument is a Microsoft IE subset of JavaScript. After
this point, though, the JavaScript is pure W3C DOM and is consistent with NN6+.

With this line, writersNode is defined as the root element of the XML file with the
documentElement property:

writersNode = myXML.documentElement

Its first child is the <EnglishLanguage> node, so the variable languageNode is
defined as writersNode.firstChild. Then the rest of the nodes in the XML
document are defined until the first child of the <name> node is encountered and
its node value is placed into a variable to be displayed in a text window. All of the
processes are placed into the findWriter() user function. Figure 17.1 shows
how the page looks when opened in a browser.

Figure 17.1. The first child of <pen> is displayed.

readFirstChild.html
<html>
<head>
<link rel="stylesheet" href="readXML.css" type="text/css">
<title>Read First Child</title>
<xml ID="writersXML" SRC="writers.xml"></xml>
<script language="JavaScript">
function findWriter() {
 var myXML, writersNode, languageNode,
 var penNode,nameNode,display
 myXML= document.all("writersXML").XMLDocument
 writersNode = myXML.documentElement
 languageNode = writersNode.firstChild
 fictionNode = languageNode.firstChild
 penNode = fictionNode.firstChild
 nameNode = penNode.firstChild
 display =nameNode.firstChild.nodeValue;
 document.show.me.value=display
 }
</script>
</head>
<body>
Read firstChild

<div>
<form name="show">
<input type=text name="me">
<input type="button" value="Display Writer" onClick="findWriter()">
</form>
</div>
</body>
</html>

Reading the last child uses an almost identical function. However, when the script
comes to the parent element <pen> of the <name> node, it asks for the last child,
or simply the one at the end of the list before the </pen> closing tag.

readLastChild.html (Function Only)
function findWriter() {
 var myXML, writersNode, languageNode,
 var penNode,nameNode,display
 myXML= document.all("writersXML").XMLDocument
 writersNode = myXML.documentElement
 languageNode = writersNode.firstChild
 fictionNode = languageNode.firstChild
 penNode = fictionNode.firstChild
 nameNode = penNode.lastChild //Here is the key line
 display =nameNode.firstChild.nodeValue;
 document.show.me.value=display
 }

Because the DOM contains keywords for the first and last children, finding the
beginning and end of an XML file is pretty simple. What about all of the data in
between? To display the middle children, first you have to find the parent and
start looking at the next or previous sibling until you find what you want. This
next function shows how that is done using the nextSibling property.

readSibling.html (Function Only)
function findWriter() {
 var myXML, writersNode, languageNode
 var penNode,nameNode,nextName,display
 myXML= document.all("writersXML").XMLDocument
 writersNode = myXML.documentElement
 languageNode = writersNode.firstChild
 fictionNode = languageNode.firstChild
 penNode = fictionNode.firstChild
 nameNode = penNode.firstChild
 nextName=nameNode.nextSibling //Not the first but the next!
 //The first child is the only child in the next node.
 display =nextName.firstChild.nodeValue;
 document.show.me.value=display
 }

The three functions differ little in what they do or how they do it. However, using
this method to find a single name in a big XML file could take a lot of work. As
you might have surmised, because the XML file is part of an object, you can
extract it in an array-like fashion.

Reading Tag Names

Instead of tracing the XML tree through child and parent nodes, you can use the
getElementByTagName() method. By specifying the tag name that you’re seeking,
you can put all of the tag’s values into an object and pull them out using the
document.item() method. The process is much easier than going after first and
last children or siblings and, I believe, much more effective for setting up
matching components. The following script is similar to the others and uses the
same external Cascading Style Sheet. The form is slightly different at the bottom,
so the whole program is listed rather than just the function. Figure 17.2 shows
the output in the browser.

Figure 17.2. All of the data in the specified tag category
are brought to the screen.

readNode.html
<html>
<head>
<link rel="stylesheet" href="readXML.css" type="text/css">
<title>
Read the whole list
</title>
<xml ID="writersXML" SRC="writers.xml"></xml>
<script language="JavaScript">
function findWriters() {
 var myXML, myNodes;
 var display="";
 myXML= document.all("writersXML").XMLDocument;
 //Put the <name> element into an object.
 myNodes=myXML.getElementsByTagName("name");
 //Extract the different values using a loop.
 for(var counter=0;counter<myNodes.length;counter++) {
 display += myNodes.item(counter).firstChild.nodeValue +
"\n";
 }
 document.show.me.value=display;
}

</script>
</head>
<body>

Read All Data

<div>
<form name="show">
<textarea name="me" cols=30 rows=5></textarea><p>
<input type="button" value="Show all" onClick="findWriters()">
</form></div>
</body>
</html>

At this stage in browser development, the great majority of terms used in
extracting data from an XML file are cross-browser–compatible, especially when
Version 6 of both browsers are compared side to side. In large measure, this is
due to the fact that the browser manufacturers are beginning to comply with the
W3C DOM recommendations. The Microsoft extensions to the W3C DOM could
become adopted as part of the DOM (as some have already), or the W3C DOM
could develop functional equivalents. However, at the time of this writing, there
might not actually be a W3C DOM–compliant method of the crucial first step of
loading an XML document into an HTML page. So, in the meantime, which I hope
is short, it is necessary to use the single-browser, single-platform techniques
shown previously.

Well-Formed XML Pages

A well-formed XML page requires either a DTD or a schema (exclusively
Microsoft).The DTD tells the parser what kind of data is contained in the XML file.
If XML pages were parsed only by JavaScript, no one would worry too much
about DTD. However, when a browser parses an XML file, it looks at the DTD to
determine what kind of data are in the file and how it is ordered. XML validators
scan XML files and determine whether they are valid, but browsers do not
validate XML files. (A good validator can be found at Brown University’s site,
www.stg.brown.edu/service/xmlvalid/.) If an XML file is not valid, problems are
likely to crop up.

Validation takes a little extra work, but you will know that your XML file is well
formed, and it won’t run into problems down the line somewhere. Using the
example XML file used previously, a DTD has been added in the following file,
writersWF.xml.

All document type definitions begin with this line:

<!DOCTYPE rootName [

Because writers is the root element, it goes in as the root name. Next, the first
child of the root is declared—in this case, the child is <EnglishLanguage>, so
the !ELEMENT declaration is as follows:

<!ELEMENT writers (EnglishLanguage)>

You continue with !ELEMENT declarations until all of them are made. If more than
one instance of an element is within another element’s container, a plus sign (+)
is added to the end of the element name. Because three nodes using <name> are
within the <pen> element, the !ELEMENT declaration for <name> has a plus after it:

<!ELEMENT pen (name+)>

Finally, close up the !DOCTYPE declaration using this code:

]>

Your file is ready for validation. The complete listing follows.

writersWF.xml
<?xml version="1.0" ?>
<!DOCTYPE writers [
<!ELEMENT writers (EnglishLanguage)>
<!ELEMENT EnglishLanguage (fiction)>
<!ELEMENT fiction (pen)>
<!ELEMENT pen (name+)>
<!ELEMENT name (#PCDATA)>
]>
<writers>
 <EnglishLanguage>
 <fiction>
 <pen>
 <name>Jane Austin</name>
 <name>Rex Stout</name>
 <name>Dashiell Hammett</name>
 </pen>
 </fiction>
 </EnglishLanguage>
</writers>

Will this new validated file work with the example scripts provided previously?
You bet! In all of the previous files showing how JavaScript parses XML files,
substitute writersWF.xml for the original writers.xml in this line:

<xml ID="writersXML" SRC="writers.xml"></xml>

When you re-run the script in IE5+ on your Windows PC, you will see exactly the
same results. The only difference is that now your XML file is well formed.

XHTML

Using XML, HTML, and JavaScript together can be a bit confusing. You might want
to take a look at XHTML, where you will find better integration between XML and
HTML. XHTML brings well-formed code to HTML. At the same time, you can insert
JavaScript into the middle of XHTML pages for adding dynamic action. A good
place to start is with XHTML, by Chelsea Valentine and Chris Minnick (New Riders,
2001).

Summary

To say that this chapter just scratched the surface of XML is an understatement.
However, understanding even a little of how JavaScript and XML work together is
a preview of the direction of the W3C DOM and the future of JavaScript. The
capability to pull data out of an XML file is a bit easier than pulling it out of a
database using PHP, ASP, or CGI as intermediaries. Using server-side JavaScript
and a well-formed XML file, you can perform just about anything that you can
with files stored in more traditional databases. (Getting data into an XML file and
storing it, though, is a horse of a different color.)

At the point of this writing, all of JavaScript and the W3C DOM are on the verge
of providing a robust language for manipulating data stored in XML files.
Designers are encouraged to follow the changes and to see how XML can be used
effectively for their clients, and many clients are now demanding the XML
structures for their data. Taking some time to learn more about XML is essential
for keeping up with all of the changes taking place on the web, especially in
storing and retrieving structured data.

Chapter 18. Flash ActionScript and
JavaScript

CONTENTS>>

• ActionScript And JavaScript
• Firing a JavaScript Function from Flash
• Passing Variables from Flash 5 to JavaScript

One of the most popular applications for creating interactive web sites is Flash.
Flash SWF files reside in web pages, and these files can communicate with
JavaScript. Flash pages are very easy to use for creating sophisticated animation
at very low bandwidth. Both of the major browsers are shipped with Flash plug-
ins, so cross-browser compatibility is not the issue that it is with JavaScript.

However, on many occasions, you will find that firing a JavaScript function from
an HTML page with a Flash file can give you the design you want that cannot be
accomplished by Flash alone. For example, one client wanted to have an external
link to pages that showed some awards that her company had received. The
pages with the awards were nice to see, but they really did not fit into the Flash
design. Creating a JavaScript function that opened the pages in a separate HTML
window made the pages accessible without requiring them to be embedded in the
HTML page with the SWF file. Likewise, other uses can be discovered for
JavaScript in a Flash environment. This chapter examines how the power of Flash
and ActionScript (Flash’s built-in language) can be enhanced by JavaScript, and
vice versa.

ActionScript and JavaScript

To get the most out of this chapter, you will need to know Flash 5 and something
about its built-in language, ActionScript. Fortunately, ActionScript is almost
identical to JavaScript, especially the newer versions of JavaScript. The main
difference between the two is that ActionScript was designed to work with Flash’s
timeline and movie clip environment, and JavaScript was designed to work in an

HTML environment. The dot syntax is very similar, and most lines require a
semicolon at the end. ActionScript follows the same semicolon placement rules
that JavaScript does, except that the semicolons are mandatory in ActionScript
and optional in JavaScript.

If you are wholly unfamiliar with ActionScript but know Flash, take a look at
ActionScript f/x and Design (Coriolis, 2000), or dust off the ActionScript manual
that accompanies Flash 5 . In this chapter, only selected ActionScript elements
are explained in any detail; while every attempt is made to provide enough
explanation of ActionScript to see how a certain script accomplishes a goal, a little
background will help.

Firing a JavaScript Function from Flash

Probably the most valuable and simple technique that you can use with
JavaScript and Flash is calling a JavaScript function using this ActionScript format:

getURL("javascript:jsFunction()");

For example, in one project I wanted to call up HTML pages with lots of text.
While text is relatively “light” in HTML, it can really bog down a Flash movie. I
created three buttons in Flash, and each one contained this script, with a
variation on the function swissy1()–swissy2() and swissy3().

on (release) {
 getURL ("javascript:swissy1()");
}

Figure 18.1 shows the script in the Object Actions window being developed in
Flash.

Figure 18.1. Linking JavaScript functions to a Flash
movie is simple.

After the HTML page was published from Flash, all of the functions were added to
the HTML page that Flash generated. The following shows the revised script:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>ScottishSwissy</title>
<script language="JavaScript">
//This section was added
function swissy1(){
 open("swissy1.html","s1","scrollbars=1, width=500, height=400,
 resizable=yes")
 }
function swissy2(){
 open("swissy2.html","s2","scrollbars=1, width=500, height=400,
 resizable=yes")
 }
function swissy3(){
open("swissy3.html","s3","scrollbars=1, width=500, height=400,
resizable=yes")
}
</script>
</head>
<body bgcolor="#ffffff">

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swf
lash.
cab#version=5,0,0,0" width="100%" height="100%">
<param name="movie" value="ScottishSwissy.swf">
<param name="quality" value="high">
<param name="bgcolor" value="#FFFFFF">
<embed src="ScottishSwissy.swf" quality="high" bgcolor="#FFFFFF"
width="100%"
height="100%" type="application/x-shockwave-flash"
pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?P
1_Prod_Version
=ShockwaveFlash">
</object>
</body>
</html>

NOTE

The previous script had some very long comments generated by Flash when it
was published. They were not informative to understanding the connection
between a JavaScript function and Flash, and they were removed.

Each of the HTML pages that appear contained the following JavaScript fired by a
button to get the HTML page off the screen after it was viewed.

function closeIt() {
 window.close();
 }

Whenever an external HTML page is opened in a separate Window, be sure to
include a Close button of some sort along with the appropriate script. Figure 18.2
shows the Flash page and external HTML page when working together.

Figure 18.2. New windows opened from Flash should
always have a Close button.

Passing Variables from Flash 5 to JavaScript

When the fscommand() statement was added to the Flash ActionScript lexicon
way back in Flash 3 , many developers were optimistic about easily passing
variables from Flash to an HTML page via JavaScript. However, something
happened along the way, and about the only browser around that supports the
fscommand() and JavaScript is version 4 of Netscape Navigator. Tested on NN6.1,
the fscommand() was not recognized in the browser, and while IE can handle a
VBScript version of an fscommand() statement, it doesn’t respond to the
JavaScript version.

In Flash, the fscommand() has this format:

fscommand(command,args);

The two arguments in the function, command and args, can be two strings,
variables, or a function and its arguments, as implied by the terms. However,
command and args, the default terms in the normal mode of entering ActionScript,
can be replaced by string literals or any variables that you want to include.
Whatever you put in the command and args arguments in the fscommand action is
passed to a JavaScript program that you create in the HTML page that contains
the SWF files with the fscommand action. For example, in a button script, a
developer might enter this:

On(release) {
 fscommand("Hope","Glory");
}

The two strings “Hope” and “Glory” are passed to two arguments in a JavaScript
function. The function name is automatically generated by Flash, and all you have
to do is to fill in the statements within the JavaScript function’s curly braces. For
example, if the previous fscommand action were used in a Flash movie and the
movie were saved as hopeful, the JavaScript function generated would look like
the following script segment in the Flash-generated HTML:

...
<SCRIPT LANGUAGE=JavaScript>
<!--
var InternetExplorer = navigator.appName.indexOf("Microsoft") != -1;
// Handle all the FSCommand messages in a Flash movie
function hopeful_DoFSCommand(command, args) {
 var hopefulObj = InternetExplorer ? hopeful : document.hopeful;
 //
 // Place your code here…
 //
}….

The function name, hopeful_DoFSCommand(command,args), is automatically
generated by Flash when the movie is published and the HTML publishing setting
template is set to Flash with FSCommand in Publishing Preferences. The
extension attached to the Flash filename with an underscore, _DoFSCommand, links
the function to the Flash fscommand action that sends the variables to JavaScript.
(The line beginning var hopefulObj= is a conditional statement to jump to
another section of the script that handles VBScript for Internet Explorer.)

The <EMBED> tag must include the name of the Flash movie and must set the
swLiveConnect to true, as shown in the following tag segment:

<EMBED swLiveConnect=true NAME=hopeful ...>

If your Publish settings are correct, all of this will be done for you.

Data Entered in Flash and Passed to JavaScript

To see how the process works, this next movie lets the user enter data in the
Flash section of the movie and pass it to a form in HTML via JavaScript. The
following steps guide you through the process:

1. Open a new Flash movie and set the stage size to 450 by 300. Select
Modify, Movie from the menu bar. This size movie will give you room at
the bottom for an HTML form that will show the data passed from Flash.

2. Add layers for a total of four layers, with the names from top to bottom.
Send to JavaScript, Labels, Data Entry, and Background.

3. Create a color in the Mixer panel with the values R=232, G=49, B=0 (red).
Add that color to your Swatches panel. From the menu bar, select Modify,
Movie; in the background color well, select the red that you just added to
the Swatches panel.

4. Select the Data Entry layer and add two input text fields in the middle of
the stage. (Use Figure 18.4 as a guide.) Select the left text field and, in
the Variable text window in the Text Panel, type in alpha; for the text
window on the right, use the variable name omega. Use a 12-point dark-
color Verdana font. Lock the layer.

Figure 18.4. Data from Flash can be passed through
JavaScript and put into an HTML form or variable.

5. Select the Labels layer and type in String 1 using Static text under the
left input window and String 2 under the right one. Above both windows,
type in Press to send to JavaScript. Use Figure 18.4 as a guide. Lock
the layer.

6. Select the Send to JavaScript layer. Add two colors to your swatches: R=0,
G=91, B=0 (green) and R=141, G=43, B=78 (deep purple). Using the
green for the stroke (3-point stroke) and purple for the fill, draw a circle
with a 28pixel diameter. Select the circle and press the F8 key to open the
Symbol Properties dialog box. Choose Button as the behavior, and name
the button Frank or any other name that you want; then click OK. Place
the button between the two input text fields.

7. Select the button and open the Object Actions panel, and insert the
following script:

8.
9. on (release) {
10. FSCOMMAND (ALPHA, OMEGA);
11. }

Figure 18.3 shows the entry in Flash’s Object Actions panel.

Figure 18.3. Entering the fscommand action in
Flash.

8. Save the FLA file as fsCommand.fla. From the menu bar, select File,
Publish Settings, HTML, Template, Flash with FSCommand. Click the
Publish button on the right side of the HTML tab.

9. Open the HTML page created by Flash (fcCommand.html) in your text
editor of preference (such as Notepad or SimpleText). Edit the page so
that it conforms to the following script:

10.
11. <HTML>
12. <HEAD>
13. <TITLE>fsCommand</TITLE>
14. <SCRIPT LANGUAGE=JavaScript>
15. function fsCommand_DoFSCommand(alpha,omega) {
16. document.show.me.value=alpha + " and " + omega;
17. }
18. </script>
19. </HEAD>
20. <BODY bgcolor="pink">
21. <center>
22. <OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
23. codebase="http://download.macromedia.com/pub/shockwave/cabs/f

lash/swflash.cab#versi
24. on=5,0,0,0" ID=fsCommand WIDTH=450 HEIGHT=300>
25. <PARAM NAME=movie VALUE="fsCommand.swf">
26. <PARAM NAME=quality VALUE=high>
27. <PARAM NAME=bgcolor VALUE=#E83100>
28. <EMBED src="fsCommand.swf" quality=high bgcolor=#E83100

WIDTH=450 HEIGHT=300
29. swLiveConnect=true NAME=fsCommand TYPE="application/x-

shockwave-flash"
30. PLUGINSPAGE="http://www.macromedia.com/shockwave/download/ind

ex.cgi?P1_Prod_Versi
31. on=ShockwaveFlash"></EMBED>
32. </OBJECT>
33. <form name="show">
34. <input type=text name="me">
35. </form>
36. </center>
37. </BODY>

</HTML>

As you can see from the script, the JavaScript function has been moved to the
head area of the script, a form has been added, and all of the extraneous
material for working with VBScript has been eliminated. Otherwise, not a lot was
changed from the original script generated by Flash. (If you so desire, you can
leave the VBScript material in.) The argument names are alpha and omega
instead of the generated command and args. (They could have been named
Bonnie and Clyde, or anything else, for that matter. As long as the argument
names match the terms used in the statement in the function, the correct data
will be passed from Flash to JavaScript.)

When you load an HTML page into Netscape Navigator 4.x, you will see the page
shown in Figure 18.4. By adding text in the Flash text windows labeled String 1
and String 2 and then pressing the button, the two strings will be placed in the
HTML form at the bottom of the page with the word and concatenated between
them.

The point of this exercise is to see how variables can be passed from Flash to an
HTML page using JavaScript. Unfortunately, only Netscape Navigator 4.x supports
using JavaScript in this way, and the newer versions of Navigator do not. In
future versions of Flash and the major browsers, we hope that the functionality of
the fscommand action is the main way that Flash data is passed to HTML. Between
calling JavaScript functions from HTML and passing Flash data to HTML with
fscommand, a complete cycle of data is possible using JavaScript.

Summary

Working with Flash is an important role for JavaScript. Passing data, variables,
functions, and other information between an SWF file on an HTML page and the
HTML page itself enables data from multiple sources to be used interchangeably.
Having the capability to call JavaScript functions from Flash using the
getURL("javascript:jsfunction()") action enables Flash to have most of the
power that JavaScript has in working with HTML pages.

Unfortunately, limited exchange between Flash and JavaScript, even with the
fscommand action, does not allow the kind of full exchanges between the SWF file
and JavaScript as would be desired. Currently, only Netscape Navigator 4.x
provides a platform on which JavaScript can receive and use data from Flash.
However, in future editions of either Flash or the browsers, we hope for a
functionally similar action.

In the meantime, keep in mind that JavaScript functions can be called from Flash.
Everything from pop-up alert boxes to external windows can easily be passed
from a JavaScript function to a Flash movie simply by a little ActionScript that
gets some needed help from JavaScript.

Chapter 19. JavaScript and Other
Languages

CONTENTS>>

• JavaScript and Java Applets

• A Little Java
• JavaScript And ColdFusion
• JavaScript and ASP.NET

This chapter explores the relationship between JavaScript and other languages
that you might encounter or want to learn more about. Each of these applications
has its own unique relationship to JavaScript, and the role of JavaScript is an
adjunct or facilitating one. None of them relies fundamentally on JavaScript, but
they can be enhanced or in some way facilitated by JavaScript’s capability to deal
with different objects.

JavaScript and Java Applets

Java, while JavaScript’s namesake, has very little in common with JavaScript
other than some structures in the way that it is coded. Java is a compiled
language, and because it is not interpreted in the browser as is HTML and
JavaScript, it must be loaded into an HTML page to be viewed in a browser. Like a
graphic or SWF file, Java programs, called “applets” (little applications), can be
placed anywhere in an HTML script. The following format is the general one to
bring in a Java applet to an HTML page:

<applet code="appletName.class" name="anyName" width=w height=h>

The width and height variables set a block reserved for the Java applet. Measured
in pixels, the block can take up just enough space for the applet, or it can take up
a larger chunk that will be blank around the applet.

JavaScript to Check for Java-Enabled Browsers

I’ll come back to the HTML surrounding a Java applet, but first you should have a
way to find whether your browser’s Java is enabled. You can save yourself a good
deal of time and frustration, as well as that of the viewer who looks at your pages,
by using JavaScript to see if Java is enabled. If Java is not enabled, no Java
applet can check for that because, if it is disabled, the applet won’t run. Therefore,
JavaScript is essential to determine whether the user (or designer) has her Java
enabled in the browser.

The general JavaScript technique for determining whether a browser has Java
enabled uses this method with the navigator property to generate a Boolean
outcome:

javaEnabled()

Hence, this line used in a conditional statement returns true or false:

navigator.javaEnabled()

The following script demonstrates how the method can be used. (Try it out on
your own browser with Java enabled and disabled.)

<html>

<head>
<title>Check Java Enabled</title>
<script language ="JavaScript">
var gottaJava="Your Java is enabled in your browser. Your Java
applets are ready to
launch.";
var lackaJava="Java is not enabled and until you enable Java in your
browser, none
of the Java applets will launch.";
function gotJava() {
 alert(gottaJava)
 }
function nadaJava() {
 alert(lackaJava)
 }
if(navigator.javaEnabled()) {
 gotJava();
 } else {
 nadaJava();
 }
</script>
</head>
<body>
The page is up.
</body>
</html>

Figure 19.1 shows what you can expect when your browser has Java enabled.

Figure 19.1. Using JavaScript to tell a user whether the
browser has Java enabled can save a lot of frustration in

looking at blank pages.

A Little Java

At this point, you will need a Java applet to see the role of JavaScript. You can
find plenty of free Java applets on the web. For example, java.sun.com has lots

of free applets. (Hint: Click on Applets, Freebie Applets). However, if you’d like to
try a little Java yourself, follow this path:

Java.sun.com > Java Tutorial > Your First Cup of Java Win32|UNIX|Mac

Be sure to click on Win32, UNIX, or Mac instead of the general Your First Cup of
Java link. Download the Java 2 Platform, Standard edition, and the Developer’s
Kit (all free!). When you have gone through the tutorial, try out the following
Java applet. First, write the source code in a text editor (such as Notepad or
SimpleText). Save the file as tooEZ.java. Note the different versions for Windows
PC and Macintosh.

Windows:

tooEZ.java
import java.applet.*;
import java.awt.*;
public class tooEZ extends Applet {
 public void paint(Graphics g) {
 g.drawString("Java is a bit more demanding than
JavaScript.", 50, 25);
 g.drawString("You will find it used on servers as well.",
80, 50);
 }
}

Macintosh:

tooEZ.java
import java.applet.Applet;
import java.awt.Graphics;
public class tooEZ extends Applet {
 public void paint(Graphics g) {
 g.drawString("Java is a bit more demanding than
JavaScript.", 50, 25);
 g.drawString("You will find it used on servers as well.",
80, 50);
 }
}

Compile the tooEZ.java file to generate the tooEZ.class file. The class file is the
file that you load into an HTML page. The following HTML page will load your
applet and show it on the screen:

<html>
<head>
<title>EZ Applet Loader</title>
</head>
<body bgcolor="powderblue">
<applet name="javaDaba" code="tooEZ.class" width=300 height=250>
</applet>
<h3>The Applet takes up space assigned in the applet tag.</h3>
</body>
</html>

Note that the applet does not have the same background color as the rest of the
HTML page. All font and background colors have to be generated in the Java
applet. Figure 19.2 shows what you should see on your screen.

Figure 19.2. The block occupied by the Java applet
moves the HTML text lower on the screen.

JavaScript and Applets

When an applet is embedded in an HTML page, JavaScript can access it through
an applets[] array in the Document object expressed as an element name or
number. More importantly, JavaScript can address a Java applet’s methods.
Unfortunately, Netscape Navigator and Internet Explorer do not share a
compatible way of dealing with Java or JavaScript in this context. Microsoft
ActiveX is used to control applets in Internet Explorer, and LiveConnect is in
charge in Netscape Navigator up to Version 4. Beginning with Version 6, Netscape
changed the DOM so that the applets[] array does not access Java controls in
the same way as NN4.x . So, the following discussion will focus on using NN4.x
with JavaScript and Java objects in an HTML page. As tested, they ran on both
NN4.7 and IE5.5 .

Calling Java Applet Methods from JavaScript

To see how JavaScript calls a Java applet’s method, the next example makes a
Java applet appear and disappear on the page. The two Java methods, hide()
and show(), are standard methods of the Java Applet class. If you have applets
that have their own methods, they can be called by JavaScript as well. These
next two statements both call the applet named in the <applet> tag—once by its
name and once by its element value:

document.javaDaba.hide()

and

document.applets[0].show()

However, the two methods, hide() and show(), are not part of the JavaScript
DOM and so are demonstrably methods belonging to Java. Figures 19.3 and 19.4
show two buttons firing JavaScript functions to make the Java applet disappear
and then reappear.

Figure 19.3. The left button hides the Java applet by
launching a JavaScript function.

Figure 19.4. The right button makes the hidden Java
applet reappear.

jsJava.html
<html>
<head>

<title>Hide/Show Java</title>
<script language ="JavaScript">
function hideJava() {
 document.javaDaba.hide()
 }
function showJava() {
 document.applets[0].show()
 }
</script>
</head>
<body bgcolor="cornflowerblue">
<applet name="javaDaba" code="tooEZ.class" width=300 height=250>
</applet>
<form name="stealth">
<input type=button value="Hide Java Applet" onClick="hideJava()";>
<input type=button value="Show Java Applet" onClick="showJava()";>
</form>
</body>
</html>

Many of the Java applets that were necessary for dynamic web pages have been
replaced to some degree by newer applications of both JavaScript and animation
programs that generate SWF files (such as Flash and LiveMotion). The fact that
Java files are compiled and not interpreted by the browser did not diminish the
fact that they had to be sent across the web, slowing down larger files. As a
result, much of the Java programming has migrated to servers where Java
“servelets” can effectively deal with server-side tasks.

JavaScript and ColdFusion

In Chapters 14– Chapter 19, different types of server-side or database
applications were viewed working with JavaScript. JavaScript’s main role was that
of a preprocessor in a client-side environment. Another popular server-side
program is one from Macromedia called ColdFusion. Like PHP, CGI, and ASP,
ColdFusion works only with a special server that processes its code. However,
unlike the other server-side languages discussed so far, ColdFusion has some
JavaScript keywords that it adds to the JavaScript lexicon when used in a CF
context. The keywords, however, are designed to work exclusively with CF and do
not have a wider application.

If you decide to take up ColdFusion, you will be happy to learn that much of the
server-side scripting is done in JavaScript. Unlike some of the other middleware
examined in this book, JavaScript plays a server-side role in ColdFusion as well as
a client-side role. The SQL commands will look virtually identical to MySQL and
the SQL statements used in ASP pages.

Two JavaScript objects, WddxSerializer and WddxRecordset, are included in
Cold-Fusion, each with several functions (methods). In the next sections, each of
the objects is summarized along with each of the associated functions (methods).

WddxSerializer Object

As the name implies, this object contains functions to serialize JavaScript data
structures. Serializing means that it generates a storable representation of a
value. First, Web Distributed Data Exchange (WDDX) is a technology borrowed
from XML. It facilitates complex data exchange between web programming

languages (such as ColdFusion). So, a web site based in ColdFusion can share
data with JavaScript. The data are translated into XML and then translated from
XML into a language readable by ASP, PHP, or JavaScript. As you saw in Chapter
17, “Working with XML and JavaScript,” JavaScript does not have a cross-
platform XML interpreter. Internet Explorer uses ActiveX or document.all to
bring data out of XML to the screen. What ColdFusion has done is add its own
JavaScript object to make an equivalent transition. The only difference is that the
WDDX technology facilitates the translation rather than ActiveX.

WddxSerializer supports four functions, but only the first, serialize(), is
likely to be used to any extent. The other can be used, but the data are more
likely to be passed off using the serialize() function:

• serialize(rootOjb) Creates a WDDX packet for the WddxRecordset
object instance. On a server-side application, the following is a simple
function to serialize the data:

•
• function getTheData(data,formAlpha) {
• setSerial= new WddxSerializer(); //define object
• dataGroup= setSerial.serialize(data); //establish

packet
• if(dataGroup !=null) {
• formAlpha.value=dataGroup;
• }else{
• alert("Data will not serialize")
• }

}

• serializeVariable(name, obj) Serializes a property of a structure.
When the object is not a date, Boolean, string, number, or array, it is
treated as a structure.

• serializeValue(obj) Serializes eligible data, which includes any
JavaScript object, data, array, Boolean, number, string, or recordset.

• write(string) Is an internal function not typically called. It appends
data to a serialized data stream.

WddxRecordset Object

The WddxRecordset object includes several functions (methods)for construction
of WDDX recordsets. Unlike the WddxSerializer, the WddxRecordset creates
recordsets rather than serializes existing ones. However, one of the methods,
wddxSerialize(), does serialize a recordset of the WddxRecordset object.

• addColumn(name) Adds a column to the recordset in a WddxRecordset
instance. First the recordset is defined as an object in JavaScript, and then
the addColumn() method adds a named column. The following script
segment shows using this and other methods associated with the
WddxRecordset object:

•
• customerSet= new WddxRecordset();
• customerSet.addColumn("salesDist");
• customerSet.addRows(7);

customerSet.setField(2,"salesDist", distNum);

• addRows(number) Add the number of rows specified in the argument.
Columns use names, and rows use numbers. Generally, the columns are
fields and the rows represent records.

• getField (row,col) Returns the element (not value) in a specified
position indicated by the row number and column name.

• getRowCount() Works something like a length method, but returns the
number of rows rather than the number of items in an object or array or
characters in a string.

• setField(row,col,value) Specifies a value in a row number of a named
column—for example:

•
customerSet.setField(4, “salesDistrict”,7);

This line would set the fifth row (the first is 0) of the column (field) named
salesDistrict with the value of 7. The value 7 could have been a numeric or
string variable as well.

• wddxSerialize Serializes a recordset object.

While this book has emphasized client-side scripting with JavaScript, most of the
same structures used on the client side can be used on the server side as well. As
an added bonus, learning a new language such as ColdFusion is aided
considerably by the fact that much of the script will be JavaScript.

JavaScript and ASP.NET

Microsoft’s new .NET framework is a very different back end (if it indeed can be
called that) than ASP. In fact, ASP.NET technology is not backward-compatible
with ASP (see Chapter 15, “Using ASP with JavaScript”). The VB.NET scripting
language has many similarities with VBScript, but that is due to the fact that
VBScript has many similarities with Visual Basic, one of the core codes of
ASP.NET. Included in ASP.NET codes, besides Visual Basic, are the following:

• XML
• CSS
• HTML
• DHTML
• C++
• C# (C-sharp)

At the time of this writing, ASP.NET was still in its infancy (beta), but it has
generated a good deal of interest. However, at this stage, JavaScript does not
seem applicable. The C# language was designed to be a friendlier version of Java,
but it is compiled and so is not a substitute for JavaScript. A combination of C#
and Visual Basic, though, might be seen as the best way of handling objects
previously done by JavaScript. Working in an environment of web forms for
developing code, it is difficult to discern what role, if any, is to be played by
JavaScript. On one hand, JavaScript could play the same role in ASP.NET that it
does with ASP: that of an input preprocessor. On the other hand, preprocessing
may be done in the ASP.NET web form itself.

ASP.NET is not backward-compatible with ASP (or ASP pages written in VBScript),
but this does not mean that it is or is not compatible with JavaScript. Because
Microsoft has included DHTML as a code that works with ASP.NET, you might be

led to believe that, within the DHTML, JavaScript would be welcomed, if as
nothing more than a preprocessor.

Summary

JavaScript is a Jack-of-all-trades scripting language. It works well with HTML,
DHTML, and most middleware languages such as PHP, CGI, and ASP. What’s
more, as seen in this chapter, JavaScript works with compiled languages such as
Java to act as an event handler for methods and as a detector of a browser’s
capability to detect Java.

ColdFusion has integrated JavaScript into the heart of its language. Not only can
ColdFusion server-side scripts include JavaScript, but ColdFusion has added
keywords to the JavaScript lexicon for enhancing its role as a database
middleman.

Microsoft’s ASP.NET, on the other hand, might not have a role for JavaScript. At
this stage of ASP.NET’s development, it is difficult to say with certainty, but most
of JavaScript’s traditional functions have been solved with other coding options.
Nevertheless, when JavaScript was first introduced, no one had any idea how key
it would be come to the Internet, and ASP.NET could yet find it necessary and
useful to work in a JavaScript environment.

Appendix Example Glossary

THIS GLOSSARY IS FOR A QUICK LOOK-UP of different keywords, statements,
and terms used in standard ECMA-262 JavaScript, with clear examples provided.
You will not find words that either Microsoft or Netscape developed outside the
ECMA-262 standard, no matter how helpful these terms are. Also, you will not
find a standard “Reference” section here. If that’s what you want, you can find
the mother of all JavaScript references at
http://developer.netscape.com/evangelism/docs/reference/ecma/Ecma-262.pdf.

The European Computer Manufacturer’s Association (ECMA) is the definitive
authority on JavaScript, and its 188-page reference section includes all of the
technical material about JavaScript. (See also http://www.ecma.ch.)

This glossary’s function is to make it easy to find a term, see what it does, and
see an example of how to write it. It’s quick and simple, and it will help you get a
statement correctly written. To keep this glossary clear, the examples are short
and to the point, and the definitions are nontechnical but functional. Some
examples are shorter than others, depending on what you need to use them
effectively. Objects and their methods are listed by the nature of the object and
are followed by a property or method. For example, the string object (which is
almost never called “string”) will include string.length. Typically, the length of
a string will be found in an iterative loop such as this:

for(counter=0;counter < cusName.length; counter++) {....

The string’s name is cusName, which is a far more likely string name than string.
However, to make it simple to find what properties and methods are associated
with strings, I use string.xxxx to make it simple to find things alphabetically in
the glossary. Moreover, some properties and methods are part of an object of an

object. For example, form has several different associated elements, such as
Input, so you will see “formInput.text” and “formInput.button” entries
because they are all types of <input> options. Also, several objects have similar
or identical properties. For example, you will find “history.length” and
“array.length” entries, among others. So, to help keep things clear, it makes
more sense to alphabetize the objects using clear names rather than the
properties or methods that might occur in several different objects.

alert(value)

Opens an alert box on the screen in the browser.

Example:

var fname="Linda"
alert("Hello " + fname)

anchor

Creates an anchor in a document.

Example:

var fish = "trout"
document.write(fish.anchor("fresh_water"))

applet

An applet in the current HTML page. May be expressed as a name or an
array.

Example:

document.applets[3].hide()

Array()

A multielement array object. The keyword Array() is a constructor
object. Optionally, you can enter the number of array elements.

Example:

var group=new Array(5);
var gang = new Array("Fuzzy", "Willie", "Sleepy", "Homer")

array.concat()

Adds new elements that do not become a permanent part of the array.

Example:

var dogs = new Array("Rottie", "Sheltie")
dogs.concat("Swissy", "Beagle")
alert(dogs.concat("Swissy", "Beagle"))
//Output = Rottie, Sheltie, Swissy, Beagle

array.join()

Elements in an array are made into a single concatenated string with an
optional separator.

Example:

var dogs = new Array("Rottie", "Sheltie")
alert(dogs.join("—"))
//Output = Rottie—Sheltie

array.length

Returns the length of an array.

Example:

var cities = new Array ("Paris", "London", "Los Angeles",
"Bloomfield");
var nCities = cities.length;
//nCities = 4

array.reverse()

Reverses the order of elements in an array.

Example:

var geekLetters = new Array("alpha", "beta", "gamma");
alert(geekLetters.reverse());
//Output = gamma, beta, alpha

array.slice(s,e)

Returns a segment of an array beginning with s and ending with e.

Example:

var cities = new Array ("Paris", "London", "Los Angeles",
"Bloomfield");
var nCities = cities.splice(1,2);
alert(nCities)
//Output= London, Los Angeles

array.sort()

Puts array elements into alphabetical order.

Example:

var cities = new Array ("Paris", "London", "Los Angeles",
"Bloomfield");
var nCities = cities.sort();
//nCities = Bloomfield,London, Los Angeles, Paris

array.toString()

Converts all array elements to a single string.

Example:

var deli = new Array ("Bagels", "Lox", "Dill Pickles", "Cream
Cheese");
var food = deli.toString();
// food = single string — Bagels,Lox,Dill Pickles,Cream Cheese

button

See [formInput.button.value]

checkbox

See [formInput.checkbox.value]

clearTimeout()

See [window.clearTimeout()]

close()

See [window.close()]

closed

See [window.closed]

confirm()

See [window.confirm(q)]

Date()

Date and time object.

Example:

var today=new Date();
document.write(today);
//Screen shows: Sat Jul 28 10:52:44 GMT-0400 (2001)

Date.getDate()

Day of the month, as a number between 1 and 31.

Example:

var today=new Date();
alert(today.getDate());
//Value between 1 and 31

Date.getDay()

Day of the week, expressed as a value 0 to 6, with Sunday being 0.

Example:

var today=new Date();
alert(today.getDay());
//Value between 0 and 6

Date.getFullYear()

Returns the current year.

Example:

var today=new Date();
alert(today.getFullYear());
//Actual year such as 2003

Date.getHours()

Returns 24 hours, from 0 to 23 (midnight is 0).

Example:

var today=new Date();

alert(today.getHours());
//2 PM returns 14

Date.getMilliseconds()

Returns 0 to 999 in milliseconds.

Example:

var today=new Date();
var now = today.getMilliseconds()
document.write(now);
//Enter script and press Re-load on browser to see changes

Date.getMinutes()

Gets the current minute of the hour, between 0 and 59.

Example:

var today=new Date();
var now = today.getMinutes()
document.write(now);

Date.getMonth()

Gets the current month, from 0 to 11 (January is 0).

Example:

var today=new Date();
var now = today.getMonth()
document.write(now);

Date.getSeconds()

Returns the current seconds, 0 to 59.

Example:

var today=new Date();
var now = today.getSeconds()
document.write(now);

Date.getTime()

The time between the Date() value and January 1, 1970.

Example:

var today=new Date();
var now = today.getTime()
document.write(now);
//Some value like 996335075147 appears

Date.getTimezoneOffset()

The difference, in minutes, in local time and UTC (universal time, or
Greenwich Mean Time).

Example:

var today=new Date();
var now = today.getTimezoneOffset()
document.write(now/60);
//Shows difference in hours because to division by 60.

Date.getUTCDate()

Returns the UTC day of month (1–31).

Example:

var today=new Date();
var now = today.getUTCDate()

Date.getUTCDay()

Returns the UTC day of week (0–6).

Example:

var today=new Date();
var now = today.getUTCDay()

Date.getUTCFullYear()

Returns the UTC year (such as 2003).

Example:

var today=new Date();
var now = today.getUTCFullYear()

Date.getUTCHours()

Returns UTC hours (0–23).

Example:

var today=new Date();
var now = today.getUTCHours();

Date.getUTCMilliseconds()

Returns milliseconds of a UTC date.

Example:

var today=new Date();
var now = today.getUTCMilliseconds()

Date.getUTCMinutes()

Returns UTC minutes (0–59).

Example:

var today=new Date();
var now = today.getUTCHours();

Date.getUTCMonth()

Returns the UTC month (0–11).

Example:

var today=new Date();
var now = today.getUTCMonth();

Date.getUTCSeconds()

Returns UTC seconds (0–59).

Example:

var today=new Date();
var now = today.getUTCSeconds();

Date.getYear()

This function contains bugs. Use getFullYear() instead.

date.setDate()

Sets the day of the month between 01 and 31. (It does not change your
computer’s internal clock.)

Example:

var today=new Date();
today.setDate(31);
var myTime=today.getDate();
//myTime = 31 no matter what the day is

date.setFullYear()

Sets the year to a specified year.

Example:

var today=new Date();
var now=today.getFullYear();
today.setFullYear(1992);
alert("That was " + (now - today.getFullYear()) + " years
ago.");

date.setHours()

Sets the hours of the day from 0 to 23.

Example:

var today=new Date();
today.setHours(15);
document.write(today.getHours());

date.setMilliseconds(m)

Sets m to an integer between 0 and 999. (Values greater than 999 reduce
to the three rightmost values; 5432 reverts to 432.)

Example:

var today=new Date();
today.setMilliseconds(999);
document.write(today.getMilliseconds());

date.setMinutes()

Sets minutes between 0 and 59.

Example:

var today=new Date();
today.setMinutes(43);
document.write(today.getMinutes());

date.setMonth()

Sets the month, between 0 and 11.

Example:

var today=new Date();
today.setMonth(5); //Sets June
document.write(today.getMonth());

date.setSeconds()

Sets seconds, between 0 and 59.

Example:

var today=new Date();
today.setSeconds(54);
document.write(today.getSeconds());

date.setTime()

Sets the time in milliseconds relative to January 1, 1970.

Example:

var today=new Date();
today.setDate(996338910155);
//Sets July 28, 2001

date.setUTCDate()

Sets the UTC day of the month (1–31).

Example:

var today=new Date();
today.setUTCDate(22);
document.write(today.getUTCDate());

date.setUTCFullYear()

Sets the UTC full year (such as 2020).

Example:

var today=new Date();
today.setUTCFullYear(2002)

date.setUTCHours()

Sets UTC hours (0–23).

Example:

var today=new Date();
today.setUTCHours(17)

date.setUTCMilliseconds()

Sets UTC milliseconds (0–999).

Example:

var today=new Date();
today.setUTCMilliseconds(999);
document.write(today.getUTCMilliseconds());

date.setUTCMinutes()

Sets minutes from 0 to 59.

Example:

var today=new Date();
today.setUTCMinutes(45);

date.setUTCMonth()

Sets UTC months from 0 to 11.

Example:

var today=new Date();
today.setUTCMonth(5);

date.setUTCSeconds()

Sets UTC seconds from 0 to 59.

Example:

var today=new Date();
today.setUTCSeconds(5);

date.toLocaleDateString()

Conversion of date to string.

Example:

var today=new Date();
var ls=today.toLocaleString();
document.write(ls);
//formatted as Jul 28 14:59:29 2001

date.toString()

Conversion of date to string. Note differences in format between toString()
and toLocaleString().

Example:

var today=new Date();
var ls=today.toString();
document.write(ls);
//formatted as Sat Jul 28 15:03:55 GMT-0400 (2001)

date.toUTCString()

Conversion of data to a UTC string.

Example:

var today=new Date();
var ls=today.toUTCString();
document.write(ls);
//formatted as Sat, 28 Jul 2001 19:06:12 GMT

date.valueOf()

Date converted to a number.

Example:

var today=new Date();
var ls=today.valueOf();
document.write(ls);

document

A web (HTML) page. References to the document object are to its
properties and methods. It may also be referenced as part of a window.

Example:

window.document

document.alinkColor

Color when link is selected.

Example:

document.alinkColor="green";

document.anchors[]

Anchors in the current document as the named object or element.

Example:

var alpha=document.anchor[4]

document.applets[]

Reference to applets in the current document as a named object or
element.

Example:

var alpha=document.applets[0]

document.bgColor

Background color of a page.

Example:

document.bgColor="'#ff00ff"

document.close()

Closes an open document when writing HTML code using JavaScript.

Example:

document.close()

document.cookie

The cookie on an HTML page.

Example:

var crumbs = document.cookie;
//Read value of cookie into variable "crumbs"

document.domain

Specifies the domain from which one window can read another window.

Example:

document.domain="sandlight.com";

document.embeds[]

Array of objects of data embedded in an HTML page.

Example:

var embedBugs = document.embeds.length

document.fgColor

A document’s default text color.

Example:

document.fgColor="cornflowerblue";

document.forms[]

The form object of an HTML page. All forms constitute elements of a
form’s array object.

Example:

document.forms[0].reset();

document.images[]

The image object of an HTML page. All images on the page are part of the
image object array.

Example:

var sizeImages=document.images.length;

document.lastModified

Date of last modification.

Example:

var fixUp = document.lastModified;
document.write("Last modified by Al => " + fixUp);

document.linkColor

Sets unvisited link color.

Example:

document.linkColor="peru"

document.links

An HTML page’s link array object. (Properties of a page’s links can be
displayed after a page is fully loaded.)

Example:

function showMe() {
var alpha=document.links.length;
alert(alpha);
}

document.location

Access URL.

Example:

document.location="http://www.sandlight.com";
//link to www.sandlight.com

See also [document.URL]

document.open()

Opens a new document. Typically used for writing HTML pages from script
in JavaScript.

Example:

document.open();

document.plugins[]

See [document.embeds[]]

document.referrer

The page that linked to the current page. Requires a link from a previous
page.

Example:

var homie = document.referer;
document.location=homie;

document.title

Current HTML page’s title.

Example:

alert(document.title);

document.URL

URL of specified page. (Replaces document.location.)

Example:

Document.URL="http://www.sandlight.com"

document.vlinkColor

Specifies the color of visited links.

Example:

document.vlinkColor="#ff00ff";

document.write()

Used for both sending text to a page and writing an HTML document.

Example:

document.write("'This is bold' ");

document.writeln()

Same as document.write, with an added carriage return.

Example:

document.writeln("This is the first line.")
document.writeln("This is on another line.")

escape()

Codes string for sending in a form or email.

Example:

var alpha="Happy Birthday, Pat";
var sendMe=escape(alpha);
document.write(sendMe);
//Returns = Happy%20Birthday%2C%20Pat

eval()

Evaluates an expression and puts it into a string.

Example:

var alpha=eval(Math.sqrt(16));

alert(alpha);
//Output = 4

form

Input form treated as an array object in JavaScript.

Example:

document.forms[2].reset()

form.elements[]

All of the input and textarea elements in a form container. Each is treated
as an element of form array object and is addressed by element name or
number.

Example:

var output = document.forms[0].elements[2].value;
var output = document.customers.lastNames.value;

form.length

The numbers of elements in a form container.

Example:

var howLong = document.forms[3].length;//Number of elements in
form.
var myForm = document.forms.length; //Number of forms in
document

form.reset()

Clears all data from a form.

Example:

Function clearEm() {
document.forms[0].reset();
}

form.reset.value

Current value of a Reset button. The value is placed in an <input> tag.

Example:

var alpha=document.forms[0].wipe.value; //wipe is name of reset
button

form.textarea.value

Returns the contents of a textarea.

Example:

var Texas = document.forms[0].fred.value;
//The text area’s name is "fred."
//The variable Texas contains the contents of the textarea
//named "fred."

formInput.button.value

Returns or changes value assigned to a button.

Example:

var button = document.forms[0].butNow.value;
//Returns the name on the button!

formInput.checkbox.checked

Generates a Boolean value on whether a check box is checked.

Example:

//Checkbox object named "chuck"
if (document.forms[0].chuck.checked) {....

formInput.checkbox.defaultChecked

Boolean read-only to determine whether a check box is initially checked.

Example:

var alpha = document.forms[0].chuck.defaultChecked;
if(alpha) {
alert("It’s checked from the beginning.") }

formInput.checkbox.value

Returns on unless a specific value is assigned in the Value attribute in the
<input> container.

Example:

var alpha = document.forms[0].chuck.value

formInput.name

Returns the name of a form element.

Example:

var alpha=document.forms[0].elements[4].name;
//Places the name of the fifth element into alpha

formInput.password.value

The value of a password, as defined in the value attribute of the form
element.

Example:

var openUp = document.forms[0].elements[4].value;
if(openUp=="reallySecret") {....

formInput.radio.checked

A Boolean value to determine whether a radio button is checked.

Example:

var alpha=document.forms[0].elements[2].checked;
if(alpha) {
alert(":It’s checked");
} //elements[2] is one of three radio buttons

formInput.radio.value

The value of the value attribute is assigned in the <input> tag in the HTML
page. If no value is assigned, the value returned is on, whether the button
is checked or not. While all the names of radio buttons in a form should be
the same, the values are typically different.

Example:

var alpha=document.forms[0].elements[3].value;

//elements[3] is a radio button input element

formInput.submit.value

The value of the Submit button assigned in the <input> tag, or Submit
Query if no value is assigned.

Example:

var alpha=document.forms[0].jack.value;
//"jack" is the name of the submit button.

formInput.text.value

The current value of a text field or a value to be assigned.

Example:

var alpha=document.forms[0].announce.value;
alpha = "Read this."; //String assigned to text field
"announce".

formInput.type

Returns select-one or select multiple, depending on the contents of
the <select> tag.

Example:

var alpha=document.forms[0].nancy.type;
alert(alpha);
//name is the select element's name.

formInput.value

The value of a form input element.

Example:

var fullName=document.forms[0].name.value;

forms[n].reset()

Clears all text forms.

Example:

<body onLoad=document.forms[0].reset()

formSelect.length

The length refers to the number of options in a select property.

Example:

var numOps=document.forms[0].chooser.length;
alert("You have " + numOps + " options.");
//"chooser" is the name of the select form element.

formSelect.options

Options properties in a select object.

Example:

var selections=document.forms[0].chooser;
var selOp=selections.options.length;

formSelect.selectedIndex

Element value of the selected option.

Example:

var selections=document.forms[0].chooser; //chooser is select
obj.
var selOp=selections.selectedIndex;
alert(selOp)//Element value of selected options appears

formSelect.type

Either select one or select-multiple types.

Example:

var selections=document.forms[0].chooser;
var selType=selections.type
alert(selType) //chooser is select object

frame

See [window.frames[]]

function

A delayed operation fired by an event handler.

Example:

function showView(msg) {
alert(msg); //Statements go here.
} //Function terminated by closing curly brace

function.toString()

Places the ouput of a function into a string format.

Example:

function showMe(msg) {
alert(msg)
}
var buzz=showMe("I am a function").toString;
alert(buzz);

history.back()

Goes to the previously visited URL that was viewed before the current
page in the current session.

Example:

window.history.back();

history.forward()

Goes to the previously visited URL that was viewed after the current page
in the current session.

Example:

window.history.forward()

history.go()

Goes forward or backward a specified number of pages. Positive numbers
go forward, and negative numbers go backward.

Example:

window.history.go (2) // Two pages forward
window.history.go (-3) // Three pages back

image

Reference to an image in an HTML page. All embedded images are
considered part of an image array.

Example:

var tUp=new Image()
tUp.src="targetUp.jpg"
function showTarget() {
document.images[1].src=tUp.src
}

image.border

Returns the width of the border specified in an tag.

Example:

var bdr=document.images[0].border;
alert(bdr); //bdr is the width of the border

image.complete

Boolean value of whether the browser has completed loading an image.

Example:

var upYet=document.images[1].complete;
if(upYet) {
alert("Image is loaded");
}

image.height

Returns the value of the height HTML attribute.

Example:

var grH = document.flame.height
//flame = graphic name attribute in tag.

image.hspace

Returns the number of blank pixels on the left and right of the image.

Example:

var xPixes = document.flame.hspace
//flame = graphic name attribute in tag.

image.name

Name attribute of an tag.

Example:

//Name in tag is "flower"
document.flower

image.src

The filename (or URL) of the image to appear in the browser. This can be
changed to allow different images to occupy the same position. The first
URL is defined in the HTML tag in the SRC attribute.

Example:

var rollin= new Image();
rollin.src="pix/nextOne.jpg";
document.images[3].src=rollin.src;

image.vsapce

Returns the number of blank pixels above and below an image.

Example:

var vPixes = document.flame.vspace
//flame = graphic name attribute in tag.

image.width

Returns the width of the image set in the tag’s Width attribute.

Example:

var w=document.images[0].width;

isFinite(n)

Returns a Boolean value of whether the number is finite.

Example:

var littleNumber = 123
if(isFinite(littleNumber)) {
alert("We can afford it!")
}

isNaN(v)

Returns a Boolean value of whether the value is a number.

Example:

if(isNaN(price) {
alert("Your entry is not a number)
}

link

A link in an HTML page. Each link is an element in the links array
belonging to the document object.

Example:

function numLinks() {
var nl = document.links.length;
alert("You have " + nl " links in your page.");
}

location

The browser location and a control of that location. Each of the following
properties of location make up a part of a complete URL. The following
semificticious URL contains all of the properties in location:
http://www.sandlight.com:1944/js/seeker.html?script#side.

• location.hash #side

• location.host www.sandlight.com:1944

• location.hostname www.sandlight.com

• location.href The entire URL

• location.pathname js/seeker.html?script#side

• location.port 1944

• location.protocol http://

• location.search ?script

All of the location properties are read/write and can be used to access any
of the properties of the location object.

See also [document.location]

location.reload()

Reloads the current page.

Example:

Location.reload()

location.replace()

Replaces the current page with a new page, but without keeping a history.

Example:

location.replace(http://www.sandlight.com)

Math Constants

All math constants have a single value, as noted here. You can place them into
variables or use the constants themselves wherever needed. Use the following
example format:

var cirArea = Math.PI * (radius * radius)

Table G.1 shows the constants, their meaning, and their value.

Table G.1. JavaScript Math Constants
Name Meaning Value

Math.E Constant e 2.718281828459045

Math.LN10 Constant loge 10 2.302585092994046

Math.LN2 Constant loge 2 .6931471805599453

Math.LOG10E Constant log10 e .4342944819032518

Math.LOG2E Constant log2 e 1.4426950408889634

Math.PI Constant pi 3.141592653589793

Math.SQRT1_2 Constant 1 divided by the square root of 2 .7071067811865476

Math.SQRT2 Constant square root of 2 1.4142135623730951

Math Functions

All built-in JavaScript math functions expect some type of argument, some with a
range. However, their format is the same as for math constants and can be
placed into variables or objects, as can other functions. Table G.2 provides the
basics on math functions.

Table G.2. Math Functions and Parameters
Name Meaning Arguments

Absolute value Math.abs() Any positive or negative number
Math.acos() Arc cosine –1.0 to 1.0
Math.asin() Arc sine –1.0 to 1.0
Math.atan() Arc tangent Any positive or negative number
Math.ceil() Round up number Any positive or negative number
Math.cos() Cosine Any angle measured in radians*
Math.exp() ex computed Any expression or value to be used as

exponent
Math.floor() Round down number Any positive or negative number
Math.log() Natural logarithm Any positive value
Math.max(n1,n2) Larger of two values Any two values
Math.min(n1,n2) Smaller of two values Any two values
Math.pow(n1,n2) Computes the power of First value to the power of the second

value
Math.random() Returns a random

number
Returns a number between 0.0 and
1.0

Math.round() Rounds to the nearest
whole

Any value

Math.sin() Sine Any angle measured in radians*
Math.sqrt() Square root Any positive number
Math.tan() Tangent Any angle measured in radians*

To convert an angle to a radian, use this method:

var radian = angle * (Math.PI * 2) / 360
navigator

Browser object (not just Netscape Navigator).

navigator.appCodeName

Returns Mozilla for both IE and NN.

Example:

var ncode=navigator.appCodeName
alert(ncode) //See Mozilla!

navigator.appName

Returns browser name (Microsoft Internet Explorer or Netscape).

Example:

var nName=navigator.appName
alert(nName)

navigator.appVersion

Returns the version of the browser. However, both Netscape and Microsoft
have version numbers that do not match the version on their browsers.
Version 6 of IE returns 4.0, and Version 6.1 of NN returns 5.0. Also
returns the encryption and platform.

Example:

var nVer=navigator.appVersion
alert(nName)

navigator.javaEnabled()

Checks to see whether Java is enabled in your current browser.

Example:

if(!navigator.javaEnabled()) {
alert("Enable your browser for Java!")
}

navigator.platform

Returns the platform version (such as Wind32 or MacPPC).

Example:

var nPlat=navigator.platform
if(nPlat==Win32) {
document.fgcolor="cornflowerblue";
}

navigator.userAgent

Returns a combination of the code name and version (such as Mozilla/5.0
[Macintosh; U; PPC; en-US; rv:0.9.1] Gecko/20010607 Netscape6/6 .1b1).

Example:

var uAgnt = navigator.userAgent;
alert(uAgnt);

Number Constants

Like the math constants, the number constants have fixed values, even though
many of the values must be represented by limit values. Table G.3 shows
JavaScript’s number constants.

Table G.3. Number Constants
Name Meaning Value

Number.MAX_VALUE Largest number
possible

1.7976931348623157e+308

Number.MIN_VALUE Smallest number
close to 0

5e-324

Number.NaN Not-a-number value Any non-numeric value
Number.NEGATIVE_INFINITY A negative value

greater than the
highest value that
JavaScript can
represent

Negative maximum value plus
minimum value

Number.POSITIVE_INFINITY A positive value
greater than the
highest value that
JavaScript can
represent

Positive maximum value plus
minimum value

Number Methods

A single Number method is available in JavaScript.

numberObj.toString()

Converts a number object to a string.

Example:

var valWord=Number.MAX_VALUE;
valWord.toString();

object

A compound data type in which all other objects inherit the behavior of the
object.

Example:

var kennel = new Object();
kennel.Bigdogs = "Large breed dogs."
Kennel.Bigdogs.wolf = "Irish Wolfhounds"

object.constructor

A read-only reference to a type of object function used as constructor. For
example, if an object is used as a constructor, function Object() is
returned; if an array is used, function Array() is returned.

Example:

var kennel = new Object();
document.write(kennel.constructor)
//return — function Object() { [native code] }

object.toString()

Generally an automatic conversion in JavaScript, the method can clarify
conversions.

Example:

var hotel = Excelsior.toString() //Excelsior is an existing
object
alert(hotel)

object.valueOf()

Returns the object or its primitive value, but usually the object. Typically
returns only the object itself. (Rarely used.)

Example:

var showOut = Excelsior.valueOf();
document.write(showOut) // output=function valueOf() { [native
code] }

parseFloat()

Converts a string to a floating-point number.

Example:

var strNum = "123.45";
var realNum = parseFloat(strNum); //realNum is floating point.

parseInt()

Converts a string to an integer (rounded down).

Example:

var strNum = "123.45";
var intNum = intFloat(strNum);

screen.availHeight

Returns the vertical screen size in pixels.

Example:

var upScreen = screen.availHeight

screen.availWidth

Returns the available horizontal screen size in pixels.

Example:

var acrossScreen = screen.availWidth

screen.colorDepth

Returns the number of bits per pixel. Most modern computers provide 32-
bit color.

Example:

var colorPix = screen.colorDepth;

screen.height

Returns the actual height of the screen. (It is different from availHeight
in that it includes all space occupied by icon bars.)

Example:

var allScreenHi = screen.height;

screen.width

Returns the actual width of the screen.

Example:

var allScreenWide = screen.width;

string constructor

String objects are created using the String() constructor.

Example:

var alpha=new String("Testing");

string.big()

String is output in <big> format.

Example:

var alpha=new String("Testing");
document.write(alpha.big());

string.blink()

String is output in <blink> format.

Example:

var alpha=new String("Testing");
document.write(alpha.blink());"

string.bold()

String is output in format.

Example:

var alpha=new String("Testing");
document.write(alpha.bold());

string.charAt(p)

Returns a character in a string at position p.

Example:

var alpha=new String("willie@harlemHome.org");
 for(var counter = 0; counter < alpha.length; counter ++)
{

 if(alpha.charAt(counter) == "@") {
 var flag=1;
 } //Sets a flag variable if the @ is found
}

string.charCodeAt(p)

Returns the ASCII code of character at position p.

Example:

var alpha = new String("Fancy Characters &%$#@")
var asKey = alpha.charCodeAt(19);

string.concat(s1,s2,sx)

Concatenates strings in an argument to a string object.

Example:

var goof = new String("Mo");
var goofs = goof.concat("Larry","Curly","Shep");
document.write(goofs);

string.fixed()

Sets font to <TT> style.

Example:

var alpha=new String("Testing");
document.write(alpha.fixed());

string.fontcolor()

Assigns a font color to the string.

Example:

var alpha=new String("Color Me!");
document.write(alpha.fontcolor("pink"));

string.fontsize()

Assigns a font size using HTML’s sizing units (1–7).

Example:

var alpha=new String("I'm Big");
document.write(alpha.fontsize(7));

string.fromCharCode(c1,c2,cx)

Creates a string from ASCII or Unicode character values.

Example:

var valentine=String.fromCharCode(76,79,86,69); //Note lack of
'new'
document.write(valentine);

string.indexOf(s,st)

Locates the first occurrence of substring (s) in a string, with an optional
start (st) position. The initial position is 0.

Example:

var alpha="Lots of characters."
var sIO = alpha.indexOf("char");
document.write("The substring begins at position " + sIO +
"."););

string.italics()

Creates an italicized font.

Example:

var alpha=new String("I\'m from Rome!");
document.write(alpha.italics());

string.lastIndexOf(s,st)

Searches for the first occurrence of the substring beginning with the last
character. The initial position is 0.

Example:

var alpha="To be or not to be."
var lindx = alpha.lastIndexOf("be");
document.write("The last instance of the substring begins at
position " + lindx + ".");

string.length

Returns the length of the string.

Example:

var myName =new String("Rooty Judy Hooty");
var nameNum =myName.length -2
document.write("Her name is " + nameNum + " characters long.")
//Subtracted 2 for spaces;

string.link(url)

Creates a link to the specified URL.

Example:

var hookUp =new String("Treasure Island");
document.write(hookUp.link("http://www.sandlight.com"))

string.match(re)

Matches a string with one or more regular expressions. (Use Perl regular
expression format.)

Example:

var smarties =new String("A generation of genius.");
var findIt = smarties.match(/genius/gi); //Gobal and ignore
case
if(findIt) {
document.write("The match is made!")
}

string.replace(re,newStng)

Replaces the contents of a regular expression with a new string. (Use Perl
regular expression format.)

Example:

var smarties =new String("A generation of genius.");
var replaceIt = smarties.replace(/genius/,"science")
document.write(replaceIt) //Returns 'A generation of science.'

string.search(re)

Searches for a regular expression and returns the starting point.

Example:

var smarties =new String("A generation of genius.");
var searchIt = smarties.search(/rat/)
document.write("Mr. Rat begins at position " + searchIt +".")

string.slice(b,e)

Creates a substring beginning at position b and ending at e.

Example:

var pet = new String("Greater Swiss Mountain Dog")
var alpine=pet.slice(14,22);
document.write(alpine)

string.small()

Creates a font in the format of <small> tag in HTML.

Example:

var littleGuy=new String("Chihuahua");
document.write(littleGuy.small());

string.split(d)

Creates an array of strings from a single string, using a delimiter (d) to
break the string into elements.

Example:

var farmersMarket=new String("strawberries-cantelope-oranges-
apples")
var order=farmersMarket.split("-");
document.write(order[3]);

string.strike()

Creates strikethrough characters. Based on the <strike> tag in HTML.

Example:

var alpha=new String("Trash");
document.write(alpha.strike());

string.sub()

Creates a subscript font. Based on the <sub> tag in HTML.

Example:

var alpha=new String("Australia");
document.write("That country is down under " + alpha.sub());

string.substr (b,l)

A substring of a string beginning at b and a length of l.

(This is a subtle but important difference from string.substring().)

Example:

var alpha=new String("JavaScript is too cool.");
var work=alpha.substr(4,6) +"ing can be hard work."
document.write(work);

string.substring(b,e)

A substring of a string beginning at b and ending at e.

Example:

var alpha=new String("JavaScript is too cool.");
var work=alpha.substring(4,9) +"ing can be hard work."
document.write(work);

string.sup()

Creates a superscript font position. Based on the <sup> tag in HTML.

Example:

var alpha=new String("Arctic Circle");
document.write("That place is way up there " + alpha.sup());

string.toLowerCase()

Forces all characters in a string to lowercase.

Example:

var alpha=new String("ALL UPPER CASE");
document.write(alpha.toLowerCase());

string.toUpperCase()

Forces all characters in a string to lowercase.

Example:

var alpha=new String("all lower case");
document.write(alpha.toUpperCase());

unescape()

Changes characters from escape format to decoded format.

Example:

var alpha=new String("Testing%20one");
document.write(unescape(alpha));

window

Reference to window object.

Example:

window

window.alert()

See [alert(value)]

window.clearInterval()

Stops actions initiated by setInterval().

Example:

window.clearInterval.

window.clearTimeout()

Cancels setTimeout().

Example:

if (var clocker==4) {
window.clearTimeout()
}

window.close()

Closes a specified window or the current window. (See window.open().)

Example:

window.close();
ralph.close();//ralph is variable name defined in opening.

window.closed

Tests whether a specified window has been closed.

Example:

var checkWin=smWin.closed; //smWin is a var name defined
//when window was opened
if(checkWin) {....

window.confirm(q)

Presents a question to ask the user. A cancel returns false.

Example:

function checkFirst() {
 if(window.confirm("You really want to close it?")) {;
 window.close();
 }
}

window.defaultStatus

A read/write string property used to display a message in the window
status line.

Example:

var message="Look down here!";
window.defaultStatus=message;
//The string "Look down here!" appears in status line.

window.document

Reference to the current document. (The window term is usually
superfluous.)

Example:

var alpha=window.document.forms[2].elements[7].value;

window.focus()

Provides keyboard focus to a specified window or frame.

Example:

windows.frames[2].focus()

window.frames[]

Reference to frames within a window.

Example:

var numFrames=window.frames.length;

window.length

Returns the number of frames in a window.

Example:

var numFrames=window.length;

window.location

URL of the current HTML page loaded.

Example:

var where=window.location;

See also [location]

window.moveBy(rx,ry)

The number of pixels to move the window to the right and down. (NN
requires UniversalBrowserWrite privilege to move off the screen.)

Example:

window.moveBy(40,50)

window.moveTo(ax,ay)

Moves a window to absolute x,y position. (NN requires
UniversalBrowserWrite privilege to move off the screen.)

Example:

window.moveTo(250,400)

window.name

Name of the window specified in the window.open() statement.

Example:

var louise=window.open("","flowers")
//"flowers" is the window’s name, but to close the window use,
//louise.close()

window.open()

Opens a new window for an existing page or new page. May use variable
definition to open a window by naming arguments (url, name, features,
and replace). Both major browsers accept the following features:

height
location
menubar
resizable
scrollbars
status
toolbar
width

All arguments are separated by commas, and features are in parentheses
and separated by spaces.

Example:

var winName=window.open(" ","services","height=200
width=300",true)

window.parent

A frame’s parent. Usually used in a frame page’s script to reference
another frame.

Example:

parent.side.document.location="http://www.sandlight.com"
//'side' is a frame name in the same parent window.

window.prompt(q,d)

A prompt window appears with question q and optional default d. User
feedback can go into a variable.

Example:

function promptMe() {
var alpha=window.prompt("How old are you",18);
document.forms[0].elements[1].value=alpha;
}//The variable alpha contains whatever the user typed in.

window.resizeBy(rh,rw)

Resizes the window by rh height in pixels and rw width. Function adds
pixels to current size. (NN requires UniversalBrowserWrite privilege to
set either ah or aw to less than 100 pixels.)

Example:

window.resizeBy(200,100)

window.resizeTo(ah,aw)

Resizes the window to the absolute height and width specified. (NN
requires UniversalBrowserWrite privilege to set either ah or aw to less
than 100 pixels.)

Example:

window.resizeTo(580,400)

window.screen

See [window.screen]

window.scrollTo(x,y)

Scrolls page to x,y coordinates on screen.

Example:

scrollTo(300,200);

window.self

Used mainly to clarify a window reference to itself.

Example:

window.self

window.setInterval(script,milliseconds)

Executes a script at an interval set in milliseconds. Both NN and IE use
this form. IE does not use the second form,
window.setInterval(function,milliseconds, arguments).

Example:

window.setInterval(alpha += 3, 5000);

window.setTmeout(f,d)

Delays execution (f) for the specified number of milliseconds (d).

Example:

function ready() {
window.setTimeout("document.reactR.src=react4.src",500);
window.setTimeout("document.reactR.src=react1.src",1000);
}

window.status

A read/write string property used to read or add transient message to the
status line.

Example:

var temp = "Your frame now is Pictures."
window.status = temp;

window.top

Usually used with frames to reference the top-level window in the frame.

Example:

var topDog=window.top;

window.window

See [window.self]

